Synthesis of Enantiopure 3-Quinuclidinone Analogues with Three Stereogenic Centers: (1S,2R,4S)- and (1S,2S,4S)-2-(H ydroxymethyl)-1-azabicyclo[2.2.2]octan-5-one and Stereocontrol of Nucleophilic Addition to the Carbonyl Group

J ens Frackenpohl and H. M. R. H offmann*
Department of Organic Chemistry, University of Hannover, Schneiderberg 1B, D-30167 Hannover, Germany

Received December 28, 1999

The pseudoenantiomeric title compounds have been prepared from quincorine (QCI) and quincoridine (QCD), respectively, in enantiopure form following an efficient six-step pathway. Nucleophilic attack at the carbonyl group proceeds preferentially from the supposedly more hindered endo π-face, giving quinuclidinols with natural configuration at C5 (up to 97%). π-F ace selectivity is highest in the QCD series with bulky O-protecting groups, involving an unprecedented 1,7-stereoinduction.

Introduction

Substituted quinuclidines possess interesting and diverse pharmacological activities (Scheme 1). Recent examples include 3 -substituted quinuclidines \mathbf{C}, \mathbf{E}, and F which are among the most potent muscarinic agonists and antagonists. ${ }^{1}$ The 1 -azabicyclo[2.2.2]octane nucleus has been found to be a good mimic for the quaternary nitrogen in acetylcholine but, unlike acetylcholine, the unprotonated form is able to cross the blood-brain barrier. ${ }^{2}$ Selective muscarinic M1-type antagonists capable of penetrating the blood-brain barrier have therapeutic potential for the treatment of Alzheimer's disease.

Quinuclidine derivatives with substituents in the 3-position are able to block $5-\mathrm{HT}_{3}(\mathbf{B})$ and NK_{1}-receptors (A)., ${ }^{3,4}$ Substance \mathbf{P} is a peptide neurotransmitter that binds to the neurokinin-1 receptor and is involved in pain transmission and neurogenic inflammation. CP-96 345 \mathbf{A} is the first nonpeptide substance \mathbf{P} antagonist and has shown to be effective in animal models of pain and

[^0]Scheme 1. Selected Medicinally Relevant Compounds Derived from Quinuclidin-3-one

NK_{1}-receptor antagonist \mathbf{A} CP-96,345 (Pfizer) ${ }^{4}$
 muscarinic antagonist F (Pharmacia \& Upjohn) ${ }^{1}$

muscarinic agonist E
(Merck, Sharp \& Dohme 1

muscarinic agonist C
(Hoffmann-La Roche) ${ }^{7}$

squalene synthase inhibitor \mathbf{D}
(Zeneca) ${ }^{5}$
inflammation. ${ }^{4}$ Quinuclidinol \mathbf{D} is a squalene synthase inhibitor. ${ }^{5}$ Protonated quinudidine squalene synthase inhibitors are carbocation mimics for key steps of the farnesyl pyrophosphate (FPP) to squalene conversion. The 3-phenylethynyl substituent in \mathbf{D} is supposed to interact with a lipophilic pocket on the enzyme in a manner similar to isoprenyl subunits in a farnesyl chain. ${ }^{6}$

Tricyclic spiro derivatives of quinuclidine are al so potent selective muscarinic agonists. ${ }^{7}$ The various pharmacologically active quinuclidines have generally been patented in racemic form although contrasting bioactivity of single isomers and enantiomers is, of course, wellknown.

The synthetic methods most frequently used for the preparation of 3 -substituted quinuclidines have started from 3-methoxy-carbonylquinudidine ${ }^{8}$ and nucleophilic additions to 3-quinuclidinone.

Results and Discussion

We here report the convenient preparation of enantiopure 2-hydroxymethyl-substituted quinuclidin-3-one anal ogues from quincoridine, $\mathbf{1}(\mathrm{QCI})$ and quincorine, $\mathbf{2}^{9}$ (QCD). Oxidative degradation of the vinyl side chain was carried out by (i) double bond shift and (ii) 1,2-dihydroxyIation and subsequent 1,2-diol cleavage.

Specifically, hydrobromination of the vinyl group of unprotected β-amino alcohols 1 and 2 in HBr (62\%) afforded the alkyl bromides 3a and $\mathbf{4 a}$ in high yield (86$96 \%$), but the use of fuming HBr was essential. In contrast to the hydrobromination of quinidine, ${ }^{10}$ the formation of tricyclic ring ethers was not observed. Selective formation of the trisubstituted Saytzeff olefins $5 \mathbf{a}$ and $\mathbf{6 a}$ under E 1-like conditions proceeded via dropwise addition of a DMF solution of alkyl bromides 3a and 4a into a preheated mixture of DBU and DMF (100$110{ }^{\circ} \mathrm{C}$). Although acyl protection of the $\mathrm{C} 9-\mathrm{OH}$ group by benzoylation improved the yield of the base-mediated elimination (87% instead of 76%), reaction sequence 1 \rightarrow 5a and $\mathbf{2} \rightarrow \mathbf{6 a}$ was generally carried out without protecting group, since the additional steps gave no overall improvement (Scheme 2). Bishydroxylation of silylated trisubstituted Saytzeff olefins with catalytic amounts of OsO_{4} under two-phase conditions ${ }^{11}$ furnished the corresponding diols 7 and 8 as mixtures of four diastereomers, respectively. Olefins 5 and $\mathbf{6}$ were protected with TBDMS and TBDPS protecting groups in order to maintain sufficient solubility of the intermediate diols in organic solvents and to ease handling. Because of unsatisfactory yields on silylations of $\mathrm{C} 9-\mathrm{OH}$ groups of various QCI and QCD derivatives, protection of trisubstituted olefins 5a and 6a was optimized. While the TBDPS group was superior concerning yield (90-94\%),
(5) Brown, G. R.; Foubister, A. J.; Freeman, S.; McTaggart, F.; Mirrlees, D. J .; Reid, A. C.: Smith, G.J .; Taylor, M. J .; Thomason, D. A.; Whittamore, P. R. O. Bioorg. Med. Chem. Lett. 1997, 7, 597. McTaggart, F.; Brown, G. R.; Davidson, R. G.; Freeman, S.; Holdgate, G. A.; Mallion, K. B.; Mirrlees, D. J.; Smith, G. J.; Ward, W. H. J . Biochem. Pharmacol. 1996, 51, 1477; Ward, W. H.J .; Holdgate, G. A.; Freeman, S.; McTaggart, F.; Girdwood, P. A.; Davidson, R. G.; Mallion, K. B.; Brown, G. R.; Eakin, M. A. Biochem. Pharmacol. 1996, 51, 1489.
(6) Brown, G. R.; Clarke, D. S.; Foubister, A. J .; Freeman, S.; Harrison, P. J.; J ohnson, M. C.; Mallion, K. B.; McCormick, J.; McTaggart, F.; Reid, A. C.; Smith, G. J.; Taylor, M. J . J . Med. Chem. 1996, 39, 2971-2979.
(7) Bös, M.; Canesso, R. Heterocycles 1994, 38, 1889. Bromidge, S. M.; Cassidy, F.; Clark, M. S. G.; Eggleston, D. S.; Orlek, B. S. J . Chem. Soc., Chem. Commun. 1994, 2189. Bromidge, S. M.; Brown, F.; Cassidy, F.; Clark, M. S. G.; Dabbs, S.; Hadley, M. S.; Loudon, J . M.; Orlek, B. S.; Riley, G. J. Bioorg. Med. Chem. Lett. 1992, 2, 787.
(8) Grob, C. A.; Renk, E. Helv. Chim. Acta 1954, 37, 1689.
(9) H offmann, H. M. R.; Plessner, T.; v. Riesen, C. Synlett 1996, 690. QCI and QCD are available from Buchler GmbH , H arxbütteler Str. 3, D-38110 Braunschweig, fax: $+(0) 5307-931-31$.
(10) von Riesen, C.; J ones, P. G.; H offmann, H. M. R. Chem. E ur. J . 1996, 2, 680; Braje, W. M.; Frackenpohl, J .; Langer, P.; H offmann, H. M. R. Tetrahedron 1998, 54, 3495.
(11) Kolb, H. C.; van Nieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483.

Scheme 2. Preparation of Key Intermediates ${ }^{\text {a }}$

1 QCD
$i \mid 86 \%$

2 QCI

3b

a Reagents and conditions: (i) $1 . \mathrm{HBr}(62 \%), 2 . \mathrm{KOH}, \mathrm{NaHCO}_{3}$, 4 d; (ii) 1.5 equiv $\mathrm{BzCl}, 1.8$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{O}^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$, 16 h ; (iii) 1.3 equiv DBU, DMF, $110^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (iv) 8 equiv $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$, r.t., 20 min ; (v) 2.0 equiv $E t_{3} \mathrm{~N}, 0.1$ equiv $\mathrm{DMAP}, 1.5$ equiv TBDMSCI, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$, 10 h ; (vi) 2.0 equiv $\mathrm{Et}_{3} \mathrm{~N}, 0.1$ equiv DMAP, 1.5 equiv TBDPSCI, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} \rightarrow r t, 10 \mathrm{~h}$.
theTBDMS derivatives $\mathbf{5} \mathbf{b}$ and $\mathbf{6 b}$ were more stable, but wereformed in lower yield (69-73\%). Cleavage of vicinal diols 7 and 8 with $\mathrm{Nal} \mathrm{O}_{4}$ in tert- $\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ provided the protected C-5-ketones $\mathbf{9 a}, \mathbf{b}$ and $\mathbf{1 0 a}, \mathbf{b}$ in high yield (87$93 \%)^{12}$ and desilylation with TBAF furnished parent hydroxy amino ketones 9d and 10d. Unlike quinuclidin-3-one, which contains a plane of symmetry and is achiral, the two title azabicyclics 9d and 10d are nonracemic and homochiral, with three stereogenic centers. The transformation of QCI and QCD into their corresponding keto analogues was carried out on a gram scale in 30-35\% overall yield. Separation of diastereomers is not required (Scheme 3).
π-Facial Selectivity in Nucleophilic Additions to Carbonyl Group. As evident from Scheme 1, the new azabicyclic hydroxy ketones 9d and 10d are promising candidates and precursors for the synthesis of a wide variety of simplified quinine and quinidine analogues. Addition of vinylmagnesium bromide to the C3 carbonyl group of quinidine-based rubanone provides the known and major quinidine metabolite \mathbf{M} directly. ${ }^{13}$ For the

[^1]Scheme 3. Preparation of Enantiopure Quinuclidin-3-one Analogsa

5b $\mathrm{R}=\mathrm{TBDMS}$
5c $\mathrm{R}=$ TBDPS

7a $R=\operatorname{TBDMS}$ (73\%)
7b $\mathrm{R}=\mathrm{TBDPS}$ (78\%)

$i i i=\begin{aligned} 9 \mathbf{a} R & =\operatorname{TBDMS}(91 \%) \\ 9 b \mathrm{R} & =\operatorname{TBDPS}(93 \%) \\ 9 \mathrm{~g} R & =\mathrm{H}\end{aligned}$

6b $\mathrm{R}=\mathrm{TBDMS}$
$6 c R=T B D P S$

8a $R=\operatorname{TBDMS}$ (79\%)
8b $\mathrm{R}=\mathrm{TBDPS}(84 \%)$
$i i$

a Reagents and conditions: (i) 3equiv ${ }_{2} \mathrm{CO}_{3}, 3$ equivK ${ }_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$, 0.01 equiv OsO_{4} (solid), $\mathrm{t}-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (1:1), 6 h , rt; (ii) 1.3 equiv $\mathrm{NalO} \mathrm{O}_{4}, \mathrm{t}-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}, 2 \mathrm{~h}$, rt; (iii) 1.3 equiv TBAF, THF , $0^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$, 12 h.
preparation of naturally configurated analogues of this key metabolite, reaction of TBDMS-protected rubanone with Grignard reagents is the method of choice. Interestingly, the bulky silyl group on the C9 alcohol function of Cinchona alkaloids does not block attack at the endo face but appears to actually pull in the nucleophile toward the sterically more hindered carbonyl π-face leading to diastereoselectivities up to 9:1 in rubanol R (Scheme 4; see also O-trityl derivative 11d, Scheme 5, Table 1). ${ }^{13}$

In the case of enantiopure quinuclidin-3-one analogues 9 and 10, face selectivity of nucleophilic attack at carbon C5 is crucial for obtaining enantiopure analogues of squalene synthase inhibitor \mathbf{D} (Scheme 1). Addition of L-Selectride to the C5 carbonyl group of $\mathbf{9}$ and $\mathbf{1 0}$ can, in principle, afford two diastereomeric secondary alcohols: anti-11 and anti-12 (natural configuration at carbon C 5 , corresponding to quinidine metabolite \mathbf{M} in Scheme 4; endo attack of nucleophile) and al cohols syn-11 and syn12 (nonnatural configuration at C5, exo attack of nucleophile). Reaction of unprotected azabicyclic ketone 9d with bulky L-Selectride gave an inseparable mixture of diastereomeric alcohols anti-11e and syn-11e (51:49). In striking contrast, reaction of L -Selectride $\left(\mathrm{LiBHBu}_{3}\right)$ with C9-protected ketones $\mathbf{9 a}-\mathbf{c}, \mathbf{e}$ showed diastereose-

Scheme 4. Establishing the Natural Configuration at Carbon C3 in Quinidine ${ }^{\text {a }}$
a Note that the azabicyclic core of the natural cinchona alkaloids is numbered according to Rabe, whereas QCI and QCD derivatives are numbered systematically according to IUPAC.

Scheme 5. Synthesis of Substituted 2-Hydroxymethyl Quinuclidin-5-ols

anti-11

$\xrightarrow[\substack{\text { THF },-90 \rightarrow \\-78^{\circ} \mathrm{C}, 4 \mathrm{~h}}]{\text { (3 eq) }}$ C5: natural
configuration

anti-12

lectivity in favor of the naturally configurated anti alcohol s with up to 95\% de (Scheme 5, entries 1-4, Table 1).

I ncreasing the size of silyl protecting group furnished de's up to 71%. Trityl protected azabicyclic ketone $9 \mathbf{9}$, however, provided almost diastereosel ectively pure quinuclidinol anti-11d (de > 95\%, entry 4). A similar trend was observed for nucleophilic attack by lithiated phenylacetylene. Whereas unprotected ketone 9d gave a nearly 1:1 mixture of al cohols anti-11k and syn-11k (4\% de, entry 16), silylated ketones 9a (TBDMS) and 9c (TIPS) furnished anti-11 in 40\% de and anti-11m in 70\% de, respectively (entries 17, 18). Again, trityl protected ketone $\mathbf{9 e}$ reacted with high endo selectivity providing anti-11n (86\% de, entry 19). Although the sterically demanding TBDPS protecting group induced high diastereoselectivity, TBDMS- or TIPS-protected azabicyclic ketones 9a and 9c were used mainly, because they were more stable toward lithium nucleophiles. ${ }^{14}$ F or example, theTBDPS ether in protected ketone $\mathbf{9 b}$ was cleaved with 5-methylfuranyl-2-lithium, giving unprotected quinucli-din-5,9-diol 11i with poor diastereoselectivity (16% de, entry 13). Addition of other organolithium nucleophiles

Table 1. Reaction of C5-Ketones with Nucleophiles

entry	ketone	Quinuclidinol	R^{1}	R^{2}	nucleophile	yield [\%]	$\mathrm{de}^{\mathrm{a}}(\mathrm{dr})^{\mathrm{a}}$ [\%]
1	9 a	11a	TBDMS	H	L-Selectride ${ }^{\text {© }}$	87	62 (81:19)
2	9b	$11 \mathrm{~b}^{\text {b }}$	TBDPS	H	L-Selectride ${ }^{\text {© }}$	82	68 (84:16)
3	9 c	11c	TIPS	H	L-Selectride ${ }^{\text {© }}$	79	72 (86:14)
4	9 e	11d	Trityl	H	L-Selectride ${ }^{\text {© }}$	91	>95 (98:02)
5	9d	11e	H	H	L-Selectride ${ }^{(1)}$	85	02 (51:49)
6	10a	12a	TBDMS	H	L-Selectride ${ }^{\circ}$	84	48 (74:26)
7	10b	12b	TBDPS	H	L-Selectride ${ }^{\circ}$	80	56 (78:22)
8	9 a	11 f	TBDMS		$\mathrm{R}^{2} \mathrm{Li}$	69	64 (82:18)
9	10a	12c	TBDMS		$\mathrm{R}^{2} \mathrm{Li}$	66	34 (67:33)
10	9a	11g	TBDMS	Br	PhMgBr	77	46 (73:27)
11	10a	12d	TBDMS	Sts)	PhMgBr	73	22 (61:39)
12	9 a	11h	TBDMS		$\mathrm{R}^{2} \mathrm{Li}$	76	42 (71:29)
13	9b	$11 i^{\text {c }}$	H		$\mathrm{R}^{2} \mathrm{Li}$	65	16 (58:42)
14	10a	12e	TBDMS		$\mathrm{R}^{2} \mathrm{Li}$	72	18 (59:41)
15	9 a	11j	TBDMS	人	$\mathrm{R}^{2} \mathrm{MgBr}$	84	16 (58:42)
16	9 b	11k	H	1	$\mathrm{R}^{2} \mathrm{Li}$	67	04 (52:48)
17	9a	111	TBDMS		$\mathrm{R}^{2} \mathrm{Li}$	71	40 (70:30)
18	9 c	11m	TIPS		$\mathrm{R}^{2} \mathrm{Li}$	65	70 (85:15)
19	9 e	11n	Trityl		$\mathrm{R}^{2} \mathrm{Li}$	79	86 (93:07)
20	10a	12 f	TBDMS		$\mathrm{R}^{2} \mathrm{Li}$	75	16 (58:42)

${ }^{\text {a }}$ de and dr determined by NMR and GC; de and dr refer to the excess of anti-11 and anti-12, respectively. ${ }^{\text {b }}$ anti-11b and syn-11b could be separated after mesylation. TBDPS-protected ketone $\mathbf{9}$ was deprotected upon treatment with lithiated 2-methylfuran.
and Grignard reagents showed similar diastereoselectivities except for vinylmagnesium bromide giving only 16% de in the reaction with TBDM S-protected ketone 9a (entry 15). TBDMS-protected ketone 10a, with the more remote side chain, showed lower diastereoselectivity compared with QCD-derived ketone 9a. Reaction of TBDMS-protected ketone 10a with phenylmagnesium bromide furnished quinuclidin-5-ol 12d with only 22%
de (entry 11), whereas the corresponding reaction with parent QCD-derived ketone 9a showed 46\% de (entry 10). Likewise, reactions with lithiated alkynes (QCI-derived ketone, 34\% de; QCD-derived ketone, 64\% de), lithiated furan derivatives ($\mathrm{QCI}, 18 \%$ de; $\mathrm{QCD}, 42 \%$ de) and L-Selectride (QCI, 48\% de; QCD, 62\% de) showed the general trend toward lower diastereoselectivities with QCI-derived ketones 10a,b. Thus, diastereoselectivity of
nucleophilic attack at C5 is not limited to QCD-derived ketones, but appears in QCI-derived ketones, although less so.

The study of electronic effects in various sterically unbiased trigonal carbon centers continues to attract considerable theoretical and experimental attention and has been treated in detail in a recent thematic issue of Chemical Reviews. ${ }^{15}$ Among the many models, transitionstate hyperconjugation ${ }^{15-17}$ and electrostatic field interaction ${ }^{18,19}$ are two popular explanations for face selectivity. Extended studies of reactions of 5 -substituted adamantan-2-ones and their derivatives suggest that the reagent prefers to attack the face antiperiplanar to the more electron-rich vicinal bonds. ${ }^{20} \pi$-Facial selectivities of sterically unbiased systems have also been observed in substituted carbocyclic bicyclo[2.2.2]octanones, which are rigid models of our title ketones 9 and $10 .{ }^{21} \mathrm{~A}$ more hindered approach was preferred in the lithium aluminum hydride reduction of substituted bicyclo[2.2.2]octan-2-ones since an isopropyl group at the position adjacent to the keto group seemed to attract the hydride attack from the sterically more demanding endo face. ${ }^{22}$ This is analogous to the predominance of the more hindered approach in the LiAlH_{4} reduction of 4-tert-butylcyclohexanone. Mehta et al. studied the facial selectivities of 5,6-endo,syn-disubstituted bicyclo[2.2.2]octan-2-ones. ${ }^{23}$ anti-Substituents have an effect on face selectivity in nucleophilic additions to these ketones (syn:anti $=50$: 50 to 70:30). Addition of organometallic reagents to benzobicyclo[2.2.2]octan-2-one also exhibited syn preference. ${ }^{24}$ In the case of our ketones 9 and 10, however, electronic effects cannot exclusively explain the diastereoselectivity of nucleophilic attack, because one π-face of the C5 carbonyl group is affected by hydroxymethyl substitution at C2 and, in particular, by C9hydroxy protecting groups.

Chelation by α - and β-alkoxy substituents is wellknown to control nucleophilic attack at the carbonyl group. ${ }^{25}$ A priori, high face selectivities in nucleophilic attack at the C5 carbonyl group of QCD-derived ketones $\mathbf{9 a - e}$ may also be considered to be caused partially by interaction of the boron hydride, organolithium and

[^2]
Scheme 6. X-ray Diffraction of δ-bromo Ketone 9 f and Torsion of the Azabicyclic Cage ${ }^{\text {a }}$

a Torsion angles not drawn to scale.
Scheme 7. Structural Assignment of Functionalized anti- and syn-Quinuclidinolsa

a Reagents and conditions: (i) 3 equiv $\mathrm{LiBHBu}^{\mathrm{s}}, \mathrm{THF},-90^{\circ} \mathrm{C}$ $\rightarrow-78{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}, 82 \%$; (ii) $\mathrm{MsCl}, 2.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, 0^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 12$ h, 94%.

Grignard reagent with the lone-pair electrons of the remote and protected C9 oxygen. Chelation was indeed considered as a simple explanation in our earlier work on the preparation of Cinchona alkaloid derivatives by reduction and alkylation of rubanone. ${ }^{13}$ Test experiments with parent unprotected quinudidinone 9d did not provide significant face selectivities. However, diastereoselectivity is strongly influenced by the size of protecting groups at C9-oxygen. Even sterically less demanding δ-bromo ketone 9 (Scheme 6) provides a moderate diastereomeric excess of 36% (68:32) in favor of endoattack (Scheme 7).

Twisting of the azabicyclic moiety, rather than chelation of the reagent, is an important factor requiring consideration. First of all, X-ray analyses of δ-bromo ketone 9 f and al cohols anti-110 and syn-110 support our configurational assignments at carbon C5. Twisting of the azabicyclic core is demonstrated in Scheme 6. ${ }^{26}$ Torsion angles $\alpha(\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4)=9.0^{\circ}, \alpha(\mathrm{N} 1-\mathrm{C} 7-$ $\mathrm{C} 8-\mathrm{C} 4)=9.1^{\circ}$, and $\alpha(\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4)=13.0^{\circ}$ indicate clockwise torsion of the azabicyclic cage favoring nucleo-

[^3]
Scheme 8. X-ray Structure of δ-Bromo Quinuclidinols anti-11o and syn-11o

Table 2. Torsion Angles (in degrees) of C9-Brominated Quinuclidine Derivatives

torsion angles	bromoketone 9f	anti-quinuclidin-5-ol, anti-110	syn-quinuclidinol, syn-11o
N1-C2-C3-C4	13	12	-2
N1-C6-C5-C4	9	17	-11
N1-C7-C8-C4	9	18	-18
(twisting)	31	47	-31

philic attack from the endo face. Clockwise torsion of the azabicyclo[2.2.2]octanone core is also observed in parent Cinchona alkaloid ketones which as we have shown previously exhibit fair endo diastereoselectivities. ${ }^{13,27}$ In fact, we have now observed that clockwise twist dominates nearly all crystal structures of quincorine and quincoridine derivatives. ${ }^{26,27}$ Introduction of the bridgehead nitrogen softens and distorts an otherwise rigid bicyclic ketone, which in turn appears to affect the stereochemical outcome of nucleophilic additions. ${ }^{28}$ While the endo-preference (up to 78:22) of nucleophilic attack to QCI-based ketone 10 (Scheme 5) finds a parallel in the work of Mehta, ${ }^{23}$ the endo-preference to QCD-based ketone 9 is unprecedented (Schemes 5 and 7). Moreover, clockwise twist in the QCD-series is more devel oped than in the QCI-series (X-ray evidence ${ }^{26}$).

Assignment of anti- and syn-Configuration of Functionalized 5-Hydroxy Quinuclidines. Because of signal overlap NOE-measurements on quinuclidin-5ol 11b were not informative, and assignment of anti- and syn-diastereomers was not straightforward initially. However, the derived mesylates anti-13 and syn- $\mathbf{1 3}$ were readily separated by column chromatography. The configuration of either diastereomer was assigned by NOE and COSY measurements (Scheme 7). In the case of anti13, H-5 shows characteristic NOEs with $\mathrm{H}_{\text {3endo }}$ (a 4.8\%) and $\mathrm{H}_{6 \text { endo }}$ (b 4.8%), whereas $\mathrm{H}-5$ in syn- $\mathbf{1 3}$ shows NOE s with $\mathrm{H}_{6 \text { exo }}$ (b 9.8\%) and $\mathrm{H}_{\text {8exo }}$ (d 2.5\%). Moreover, diastereomeric quinuclidinols anti-13 and syn-13 can be easily distinguished by the $\mathrm{H}_{\text {6endo }}$ and $\mathrm{H}_{6 \text { exo }}$ signals, since the $\mathrm{H}_{\text {6endo }}$ signal of anti- $\mathbf{1 3}$ is shifted downfield ($\delta 3.51$) relative to the corresponding signal of the exo epimer (δ 3.16). In contrast, the $\mathrm{H}_{\text {6exo }}$ signal of the endo diastereomer anti-13 ($\delta 2.78$) is shifted to higher field compared with $\mathrm{H}_{6 \text { exo }}$ in syn-13 ($\delta 3.09$). These effects were previ-

[^4]ously observed in spectroscopic work on parent Cinchona alkaloid derivatives. ${ }^{13}$
Although brominated quinuclidin-5-ols anti-110 and syn-110 were obtained as a chromatographically inseparable mixture, we were able to separate syn-110 and anti110 via fractional crystallization and fully characterized both diastereomers by X-ray structure analysis. ${ }^{26}$ Thus, the NMR work is corroborated further. Like its parent ketone 9 f, the azabicyclic core of major diastereomer anti110 is twisted clockwise (Scheme 8, Table 2), whereas syn-110 is twisted anticlockwise. A change of twist-sense necessitates two full eclipsing interactions in the C2C3 and the C7-C8 bridge en route from starting bromo ketone 9 f to the minor product syn-110. We suggest that unfavorable eclipsing in the bridges is engendered by nucleophilic attack from the exo-face. Hence, endo attack is favored (Scheme 9) with formation of naturally configured anti-al cohols.

Chromatographically separable mesylated quinuclidin-5-ols anti-13 and syn-13 afford 1,2,4-triazol e derivatives, such as 14, without epimerization, upon treatment with sodium 1,2,4-triazolate in DMF (Scheme 10). These reactions are considered to be $S_{N} 2$-like, proceeding with clean inversion of configuration (anti-13 $\boldsymbol{\rightarrow} \mathbf{1 4}$). Parent triazole- and tetrazole-substituted quinuclidines derived from quinuclidin-3-one are potent and selective muscarinic ligands. In some cases, high diastereomeric excess of quinuclidin-5-ols is not decisive, since the stereogenic center at carbon C5 is lost. The reaction of methylfuranylsubstituted quinuclidin-5-ol 11i (16\% de) with formic acid provided the first enantiomerically pure analogue of antimuscarinic quinuclidin-5-ene \mathbf{F} (Scheme 1) containing three stereogenic centers and a hydroxymethyl group. Phenylacetylene-substituted quinuclidinols 11m,n not only exhibit considerable structural similarity to squalene synthase inhibitor \mathbf{D}, but in contrast to lead structure D, they contain four stereocenters centers and are obtained in high diastereomeric excess.

Scheme 9. Newman-Projection of δ-Bromo Quinuclidinols anti-11o (Clockwise Twist) and syn-11o (Counterclockwise Twist) ${ }^{\text {a }}$

a Bond angles and bond lengths not drawn to scale. Reagents and conditions: (i) 3 equiv $\mathrm{LiBHBu}_{3}, \mathrm{THF},-90^{\circ} \mathrm{C} \rightarrow-78^{\circ} \mathrm{C}, 4$ h, 85%.

Scheme 10. Synthesis of Potential Lead Structures ${ }^{\text {a }}$

${ }^{a}$ Reagents and conditions: (i) 3 equiv 5 -methyl-2-furanyllithium, THF, $-90^{\circ} \mathrm{C} \rightarrow-78^{\circ} \mathrm{C}, 4 \mathrm{~h}$; (ii) 1,2,4-sodium triazolate, DMF, $100{ }^{\circ} \mathrm{C}, 8 \mathrm{~h}, 74 \%$; (iii) HCOOH (99\%), $2 \mathrm{~h}, 96 \%$.

Conclusion

We have prepared new 1-azabicyclic ketones 9 and 10 derived from quinidine and quinine. Our ketones are single-isomer 1,2-amino alcohols containing three stereogenic centers each, including the N -chiral 1S-configurated bridgehead. Because of their low molecular weight and their compact bicyclic structure, both $\mathbf{9}$ and $\mathbf{1 0}$ are attractive homochiral building blocks for asymmetric synthesis, pharmacol ogy and combinatorial chemistry. ${ }^{9,29-31}$ Substrate control of stereochemistry in reactions of the simple QCI and QCD derivatives is a challenge greater than substrate control with the sterically more demanding parent Cinchona alkaloids. Nonetheless, nucleophilic
attack is preferentially directed toward the supposedly more hindered endo π-face of the carbonyl group, giving functionalized quinuclidinols with natural configuration at carbon C5 in diastereomeric excess up to $97 \% . \pi$-F ace selectivity, especially in the QCD series, is unprecedented and depends on the size of the remote O-protecting group (1,7 -induction). The origin of π-facial selectivity is suggested to be due to torsional strain (exo-attack leading to syn-product, Scheme 9) rather than electronic.

Experimental Section

${ }^{13} \mathrm{C}$ NMR assignments for each signal were established by DEPT measurements; multiplicities are indicated by CH_{3} (primary), CH_{2} (secondary), CH (tertiary) or C (quaternary). THF was distilled over sodium and benzophenone before use. Dichloromethane (DCM) was distilled over CaH_{2} before use. N,N-Dimethylformamide was dried and distilled over BaO and stored over molecular sieves (4 \AA). Ethyl acetate (EA), CCl_{4}, $\mathrm{CHCl}_{3}, \mathrm{DBU}$, and methyl tert-butyl ether (MTBE) were distilled before use.

Short procedure for the synthesis of azabicyclic ketones 9d and 10d. QCD, 1, or QCI, 2 (1 equiv), was added to concentrated hydrobromic acid (62%) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 4 days at room temperature (rt). After neutralization with aq $\mathrm{KOH}(\mathrm{pH} 9)$, the solution was extracted with CHCl_{3}. The combined organic layer was dried (over MgSO_{4}) and the solvent removed. Purification by column chromatography (EA/MeOH 4:1) afforded the alkyl bromides 3a and 4a. DBU (1.2 equiv) was added dropwise to the alkyl bromide 3a or 4a (1 equiv) in DMF at $100^{\circ} \mathrm{C}$ under argon. The mixture was stirred for 4 h at $110^{\circ} \mathrm{C}$. Sol vent and base were removed (Kugelrohr apparatus) and the residue dissolved in CHCl_{3}. After extraction (saturated aqueous NaHCO_{3}), the combined organic layer was dried (over MgSO_{4}), evaporated, and purified by chromatography ($\mathrm{EA} / \mathrm{MeOH} 4: 1$) to furnish the desired trisubstituted alkenes $5 \mathbf{a}$ and $\mathbf{6 a} . \mathrm{Et}_{3} \mathrm{~N}$ (1.3 equiv) was added to 5 a or $\mathbf{6 a}$ (1 equiv) in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at rt. After the solution was stirred under argon for 15 min , DMAP (0.1 equiv) and TBDMSCI (1.1 equiv) were added at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 16 h at rt , followed by extraction with saturated aqueous NaHCO_{3}. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, evaporated and purified by chromatography ($\mathrm{EA} / \mathrm{MeOH} 20: 1$) to yield silyl ethers $\mathbf{5 b}$ and $\mathbf{6 b}$, respectively. Silylated iso-QCD, $\mathbf{5 b}$, or iso-QCI, 6b,c, was added to a two-phase system of $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3 equiv) and $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ (3 equiv) in tert- $\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (1:1). After 45 min elapsed, solid OsO_{4} (0.01 equiv) was added. The reaction mixture was stirred for 5 h at rt , followed by extraction (saturated aqueous NaHCO_{3}, aq NaHSO_{3}). The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, evaporated, and purified by chromatography (EA/MeOH 4:1) to yield diols 7a and 8a. A saturated solution of NalO_{4} (1.3 equiv) in $\mathrm{H}_{2} \mathrm{O}$ was added to the silylated diol (1 equiv) in tert-butanol. The mixture was stirred vigorously for 2 h at rt , treated with saturated aqueous NaHCO_{3}, and extracted with CHCl_{3}. After the mixture was dried (over MgSO_{4}), the crude product was purified by column chromatography (EA/MeOH 20:1) to afford the silylated C5ketones 9 a and 10a. A 1.0 M solution of TBAF in abs THF (1.3 equiv) was added to C5 ketone 9a or 10a (1 equiv) in abs THF at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 10 h at rt , followed by addition of CHCl_{3} and extraction (saturated aqueous NaHCO_{3}, saturated aqueous NaCl). The combined organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, evaporated and purified by chromatography (EA/MeOH 6:1) to yield the title compounds 9d and 10d.
(1S,2R ,4S,5R ,10R/S)-2-H ydroxymethyl-5-(10-bromo-ethyl)-1-azabicyclo[2.2.2]octane (3a) and (1S,2S,4S,5R,-

[^5]10/R/S)-2-Hydroxymethyl-5-(10-bromoethyl)-1-azabicyclo[2.2.2]octane (4a). QCD, 1, ($10.40 \mathrm{~g}, 62.28 \mathrm{mmol}$) and QCI, 2, respectively, ($11.50 \mathrm{~g}, 68.26 \mathrm{mmol}$) were carefully added within 15 min to concentrated hydrobromic acid (62\%) at 0 ${ }^{\circ} \mathrm{C}$. The homogeneous reaction mixture was stirred for 4 days at ambient temperature. After neutralization with aq KOH (pH 9), the solution was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with CHCl_{3}. The combined organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed under reduced pressure. Purification by column chromatography (EA-MeOH 4:1) afforded the alkyl bromides $3 \mathrm{a}(86 \%, 13.23 \mathrm{~g}, 53.56 \mathrm{mmol})$ and $4 \mathrm{a}(93 \%, 15.68$ $\mathrm{g}, 63.48 \mathrm{mmol}$) as slightly yellow waxy solids and diastereomeric mixtures (3a 2.2:1, 4a 1.9:1). Data for 3a. IR (CHCl_{3}) $(v): 3416,2944,1452,1412,1260,1228,1024 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})(\delta): 4.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10), 4.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 3.51$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-9$), 3.42 (dd, $1 \mathrm{H}, \mathrm{J} 11,5 \mathrm{~Hz}, \mathrm{H}-9$), 2.97-2.75 (4 H , H-7, H-6, H-2), 2.70/2.49 (ddd, 1 H, J 14.2, 7.7, 2.1 Hz, H-6), 1.92-1.81 (m, 2 H, H-5, H-4), 1.71/1.67 (d, 3H, J $6.5 \mathrm{~Hz}, \mathrm{H}-11$), $1.68-1.40(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-3), 1.00-0.95(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3) .{ }^{13} \mathrm{C}$ NMR (100 MHz) (δ): $62.01\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 57.24(\mathrm{CH}, \mathrm{C}-2), 55.18$ (CH, C-10), $48.98\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 48.54\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 45.34(\mathrm{CH}, \mathrm{C}-5)$, $27.12\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 25.21(\mathrm{CH}, \mathrm{C}-4), 25.12\left(\mathrm{CH}_{3}, \mathrm{C}-11\right), 23.03$ ($\mathrm{CH}_{2}, \mathrm{C}-3$). MS m/z: $249\left(\mathrm{M}^{+}, 1\right), 247\left(\mathrm{M}^{+}, 1\right), 168$ (100). HRMS cal cd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}^{81} \mathrm{Br}$: 249.2583; found: 249.2584. Data for 4a. IR (CHCl_{3}) (v): 3444, 2948, 1452, 1412, 1260, 1236, 1032 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz) (δ): $4.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10), 3.85(\mathrm{~s}, 1$ $\mathrm{H}, \mathrm{OH}), 3.49-3.42$ (m, 2 H, H-9), 3.24-3.16 (dd, 1 H , J 14.1, $9.4 \mathrm{~Hz}, \mathrm{H}-2$), 3.02-2.89 (m, 2 H, H-7), 2.72-2.70 (m, 1 H, H-6), 2.65-2.58 (m, 1 H, H-6), 1.96-1.93 (m, $2 \mathrm{H}, \mathrm{H}-5$, $\mathrm{H}-4), 1.75 / 1.72$ (d, $3 \mathrm{H}, \mathrm{J} 6.5 \mathrm{~Hz}, \mathrm{H}-11$), 1.67-1.58 (m, 1 H , H-8), 1.56-1.41 (m, $2 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-3$), 0.83-0.75 (m, $1 \mathrm{H}, \mathrm{H}-3$). ${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}) \delta 62.89\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 57.61\left(\mathrm{CH}_{2}, \mathrm{C}-6\right)$, 57.38 (CH, C-2), 56.98 (CH, C-10), $45.59(\mathrm{CH}, \mathrm{C}-5), 39.93\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-7), 27.84\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 25.25(\mathrm{CH}, \mathrm{C}-4), 25.02\left(\mathrm{CH}_{3}, \mathrm{C}-11\right)$, $23.72\left(\mathrm{CH}_{2}, \mathrm{C}-3\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 249\left(\mathrm{M}^{+}, 2\right), 247\left(\mathrm{M}^{+}, 1\right), 168(100)$, 138 (5). HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}^{81} \mathrm{Br}$: 249.2583; found: 249.2569.
(1S,2R,4S,5R,10R/S)-2-(Benzoyloxymethyl)-5-(10-bro-moethyl)-1-azabicyclo[2.2.2]octane (3b) and (1S,2S,4S,-5R,10/R/S)-2-(Benzoyloxymethyl)-5-(10-bromoethyl)-1-azabicyclo[2.2.2]-octane (4b). Benzoyl chloride ($6.5 \mathrm{~mL}, 56$ $\mathrm{mmol}, 1.3$ equiv) was added dropwise to a stirred solution of 3a ($10.63 \mathrm{~g}, 43.03 \mathrm{mmol}$) or $4 \mathbf{a}(10.63 \mathrm{~g}, 43.03 \mathrm{mmol})$ and triethylamine ($11.9 \mathrm{~mL}, 86.1 \mathrm{mmol}, 2.0$ equiv) in abs $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(90 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After the mixture was stirred under argon for 14 h at rt , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and extracted with saturated aqueous NaHCO_{3}. The combined organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, evaporated, and chromatographed (EA/MeOH 10:1) to yield 3b ($86 \%, 12.99 \mathrm{~g}, 37.00$ $\mathrm{mmol})$ or $\mathbf{4 b}(88 \%, 13.29 \mathrm{~g}, 37.87 \mathrm{mmol})$, respectively.

Data for 3b. IR $\left(\mathrm{CHCl}_{3}\right)(v): 3008,2948,1716,1600,1452$, $1272,1224,1116 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz) (δ): $8.10-8.04$ (m, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.91-7.88 (m, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 4.58-4.49 (dd, 1 H , J 12.2, $8.4 \mathrm{~Hz}, \mathrm{H}-9), 4.39-4.34$ (dd, $1 \mathrm{H}, \mathrm{J} 12.2,4.7 \mathrm{~Hz}, \mathrm{H}-9$), 4.13-4.08 (dd, $1 \mathrm{H}, \mathrm{J} 11,6.5 \mathrm{~Hz}, \mathrm{H}-10$), $3.49-3.46$ ($\mathrm{m}, 1 \mathrm{H}$, H-2), 3.42-3.36 (m, 1 H, H-6), 3.22-3.04 (m, 2 H, H-7), 2.812.76 (ddd, $1 \mathrm{H}, \mathrm{J} 14.3,8.2,2.5 \mathrm{~Hz}, \mathrm{H}-6$), 2.45 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5$), 2.02-1.93 (m, 1 H, H-4), 1.83-1.70 (m, 3 H, H-8, H-3), 1.74 (d, $3 \mathrm{H}, \mathrm{J} 6.5 \mathrm{~Hz}, \mathrm{H}-11$), 1.49-1.42 (m, $1 \mathrm{H}, \mathrm{H}-3$). ${ }^{13} \mathrm{C}$ NMR (100 MHz) $\delta 166.63$ (C, C-12), 133.05 (C, C-13), 130.94 (CH, $\mathrm{Ar}-\mathrm{H}), 129.04(\mathrm{CH}, \mathrm{Ar}-\mathrm{H}), 128.80(\mathrm{CH}, \mathrm{Ar}-\mathrm{H}), 127.60(\mathrm{CH}$, $\mathrm{Ar}-\mathrm{H}), 127.15(\mathrm{CH}, \mathrm{Ar}-\mathrm{H}), 64.63\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 55.72(\mathrm{CH}, \mathrm{C}-2)$, $52.50(\mathrm{CH}, \mathrm{C}-10), 48.52\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 46.92\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 45.33(\mathrm{CH}$, $\mathrm{C}-5), 27.21(\mathrm{CH}, \mathrm{C}-4), 26.66\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 25.16\left(\mathrm{CH}_{3}, \mathrm{C}-11\right)$, $24.27\left(\mathrm{CH}_{2}, \mathrm{C}-3\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 353\left(\mathrm{M}^{+}, 1\right), 351\left(\mathrm{M}^{+}, 1\right), 272(21)$, 136 (20), 105 (100). FAB-MS m/z: 354 (100), 352 (98), 272 (54). HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{2}{ }^{79} \mathrm{Br}$: 351.0834; found 351.0837. Data for 4b. IR $\left(\mathrm{CHCl}_{3}\right)(v): 2952,1720,1620,1600,1452$, $1272,1116,1024 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz) (δ): $8.12-8.04$ (m, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.95-7.87(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.50-7.42(\mathrm{~m}, 2 \mathrm{H}$, Ar-H), 4.56-4.51 (dd, 1 H, J 12.3, $8.5 \mathrm{~Hz}, \mathrm{H}-9$), 4.47-4.42 (dd, 1 H, J $12.3,5.0 \mathrm{~Hz}, \mathrm{H}-9), 4.16-4.12$ (dd, 1 H , J 10.7, 6.6 Hz, H-10), 3.73-3.62 (m, 1 H, H-7), 3.58-3.52 (dd, $1 \mathrm{H}, \mathrm{J} 14.1$, $9.9 \mathrm{~Hz}, \mathrm{H}-6), 3.39-3.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 3.18-3.07(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5)$, 3.06-3.00 (ddd, 1 H, J 14.4, 8.3, 2.6 Hz, H-6), 2.57-2.47 (m,

1 H, H-7), 2.23-1.87 (m, 3 H, H-4, H-8, H-3), 1.77/1.75 (d, 3 H, J $6.5 \mathrm{~Hz}, \mathrm{H}-11$), 1.66-1.55 (m, $1 \mathrm{H}, \mathrm{H}-8$), 1.31-1.23 (m, 1 $\mathrm{H}, \mathrm{H}-3$). ${ }^{13} \mathrm{C}$ NMR (100 MHz) $\delta 166.39$ (C, C-12), 133.13 (C, C-13), 131.61 (CH, Ar-H), 129.95 (CH, Ar-H), 129.55 (CH, $\mathrm{Ar}-\mathrm{H}), 128.36(\mathrm{CH}, \mathrm{Ar}-\mathrm{H}), 127.89(\mathrm{CH}, \mathrm{Ar}-\mathrm{H}), 64.09\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-9), 55.58\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 54.56(\mathrm{CH}, \mathrm{C}-2), 52.10(\mathrm{CH}, \mathrm{C}-10), 44.05$ ($\mathrm{CH}, \mathrm{C}-5$), $40.11\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 26.33\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 25.81(\mathrm{CH}, \mathrm{C}-4)$, $24.88\left(\mathrm{CH}_{3}, \mathrm{C}-11\right), 23.16\left(\mathrm{CH}_{2}, \mathrm{C}-3\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 353\left(\mathrm{M}^{+}, 1\right), 351$ (M+, 0.4), 272 (6), 136 (5), 105 (100). FAB-MS m/z: 354 (56), 352 (64), 272 (100). HRMS cal cd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{2}{ }^{79} \mathrm{Br}$: 351.0834; found 351.0819. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{Br}$: C 57.96, H 6.29, N 3.97; found C 58.19, H 6.14, N 3.82 .

General Procedure for the Elimination of $3 \mathrm{a}, \mathrm{b}$ and 4a,b. DBU (1.2 equiv) was added dropwise to a solution of the alkyl bromide 3a,b or 4a,b (1 equiv) in anhydrous DMF at $100^{\circ} \mathrm{C}$ under argon, and the mixture was stirred for 4 h at $110^{\circ} \mathrm{C}$. Solvent and base were removed (K ugelrohr apparatus), and the residue was dissolved in CHCl_{3}. After extraction with saturated aqueous NaHCO_{3}, the combined organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, evaporated, and purified by chromatography ($\mathrm{EA} / \mathrm{MeOH} 4: 1$ for $\mathbf{3 a}$ and $\mathbf{4 a}$ and EA/MeOH 10:1 for $\mathbf{3 b}$ and $\mathbf{4 b}$, respectively) to furnish the desired trisubstituted al kenes 5a, 5d, 6a, and 6d as inseparable E/Z mixtures.
(1S,2R,4S)-2-Hydroxymethyl-(E/Z)-5-ethylidene-1-azabicyclo[2.2.2]octane (5a). 3a ($14.21 \mathrm{~g}, 57.30 \mathrm{mmol}$) was allowed to react according to the general procedure to afford $5 \mathrm{a}(76 \%, 7.27 \mathrm{~g}, 43.55 \mathrm{mmol})$. IR $\left(\mathrm{CHCl}_{3}\right)(v): 3000,2940,1452$, $1412,1236,1088,1016 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz) (δ): $5.19-$ 5.11 (m, $1 \mathrm{H}, \mathrm{H}-10$), 3.71 (bs, $1 \mathrm{H}, \mathrm{OH}$), 3.58-3.54 (d, $1 \mathrm{H}, \mathrm{J}$ $17.6 \mathrm{~Hz}, \mathrm{H}-6$), $3.50-3.38$ (m, $2 \mathrm{H}, \mathrm{H}-9$), $3.27-3.23$ (d, $1 \mathrm{H}, \mathrm{J}$ $17.2 \mathrm{~Hz}, \mathrm{H}-6$), 3.08-2.98 (m, $1 \mathrm{H}, \mathrm{H}-7$), 2.95-2.86 (m, 2 H , H-7, H-2), 2.29-2.27 (m, $1 \mathrm{H}, \mathrm{H}-4), 1.82-1.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3)$, 1.71-1.62 (m, $1 \mathrm{H}, \mathrm{H}-8), 1.58-1.55(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 1.50-1.47$ (d, $3 \mathrm{H}, \mathrm{J} 6.9 \mathrm{~Hz}, \mathrm{H}-11$), $1.05-1.00$ (m, $1 \mathrm{H}, \mathrm{H}-3$). ${ }^{13} \mathrm{C}$ NMR (100 MHz) δ 141.14/140.04 (C, C-5), 113.74/113.26 (CH, C-10), $62.84\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 57.61(\mathrm{CH}, \mathrm{C}-2), 49.82 / 49.26\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 46.78$ $\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 32.76$ ($\left.\mathrm{CH}, \mathrm{C}-4\right), 30.62 / 29.38\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 27.49 / 26.65$ $\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 12.58 / 12.27\left(\mathrm{CH}_{3}, \mathrm{C}-11\right) . \mathrm{MS} \mathrm{m} / \mathrm{z} 167\left(\mathrm{M}^{+}, 100\right)$: 150 (76), 136 (96). HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}: 167.1310$; found 167.1310.
(1S,2S,4S)-2-H ydroxymethyl-(E/Z)-5-ethylidene-1-azabicyclo[2.2.2]octane (6a). 4a ($17.00 \mathrm{~g}, 68.83 \mathrm{mmol}$) was allowed to react according to the general procedure to afford $6 \mathbf{a}(77 \%, 8.85 \mathrm{~g}, 53.0 \mathrm{mmol})$. IR $\left(\mathrm{CHCl}_{3}\right)(v): 3000,2940,1436$, $1412,1228,1072,1028 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz) (δ): $5.24-$ 5.17 (m, 1 H, H-10), 3.68 (bs, $1 \mathrm{H}, \mathrm{OH}$), 3.59-3.32 (m, 4 H , H-6, H-9, H-6), 3.08-2.98 (m, 1 H, H-7), 2.95-2.86 (m, 1 H, H-7), 2.72-2.61 (m, 1 H, H-2), 2.29-2.26 (m, 1 H, H-4), 1.761.68 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3$), 1.71-1.62 (m, $2 \mathrm{H}, \mathrm{H}-8$), 1.51-1.48 (m, 3 $\mathrm{H}, \mathrm{H}-11), 1.05-0.99(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3) .{ }^{13} \mathrm{C}$ NMR (100 MHz) (δ): 141.38/140.80 (C, C-5), 114.80/114.28 (CH, C-10), $62.84\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-9)$, $58.58(\mathrm{CH}, \mathrm{C}-2), 57.63 / 55.96\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 41.78 / 40.77\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-7), 32.73(\mathrm{CH}, \mathrm{C}-4), 31.02 / 30.11\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 28.05 / 26.81\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-3), 12.69 / 12.37\left(\mathrm{CH}_{3}, \mathrm{C}-11\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 167$ (${ }^{+}$, 91), 150 (72), 136 (100). HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}$: 167.1310; found 167.1295.
(1S,2R,4S)-2-(Benzoyloxymethyl)-(E/Z)-5-ethylidene-1azabicyclo[2.2.2]octane (5d). 3b ($3.32 \mathrm{~g}, 9.46 \mathrm{mmol}$) was allowed to react according to the general procedure to afford 5d ($87 \%, 2.23 \mathrm{~g}, 8.23 \mathrm{mmol} ; \mathrm{E} / \mathrm{Z}$ ratio: 3.1:1). IR $\left(\mathrm{CHCl}_{3}\right)(\nu)$: 3000, 2940, 1716, 1580, 1452, 1276, 1116, $1024 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})(\delta): 8.07-8.04(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.56-7.51(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{Ar}-\mathrm{H}), 7.45-7.39$ (m, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.23-5.19$ (m, $1 \mathrm{H}, \mathrm{H}-10$), 4.43-4.37 (dd, 1 H, J $11.5,8.0 \mathrm{~Hz}, \mathrm{H}-9$), $4.26-4.21$ (dd, 1 H , J 11.7, $5.5 \mathrm{~Hz}, \mathrm{H}-9$), 3.73-3.69 (m, $1 \mathrm{H}, \mathrm{H}-6$), 3.42-3.30 (m, 2 H, H-6, H-7), 3.05-2.79 (m, 2 H, H-7, H-2), 2.37-2.35 (m, 1 $\mathrm{H}, \mathrm{H}-4), 1.96-1.89(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.75-1.64(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-8)$, 1.60/1.53 (m, $3 \mathrm{H}, \mathrm{H}-11$), $1.40-1.35$ (m, $1 \mathrm{H}, \mathrm{H}-3$). ${ }^{13} \mathrm{C}$ NMR (100 MHz) (δ): 166.73 (C, C-12), 141.04/139.91 (C, C-5), 132.94/ 131.18 (CH, Ar-H), 130.15 (C, C-13), 129.73 (CH, Ar-H), 128.29 (CH, Ar-H), 113.92/113.46 (CH, C-10), $65.98\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-9), 54.62$ ($\mathrm{CH}, \mathrm{C}-2$), 49.98/49.61 ($\left.\mathrm{CH}_{2}, \mathrm{C}-6\right), 48.01\left(\mathrm{CH}_{2}, \mathrm{C}-7\right)$, $32.85(\mathrm{CH}, \mathrm{C}-4), 31.17 / 30.12\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 27.13 / 26.24\left(\mathrm{CH}_{2}, \mathrm{C}-3\right)$, 12.61/12.34 ($\left.\mathrm{CH}_{3}, \mathrm{C}-11\right) . \mathrm{MS} \mathrm{m/z:} 271$ (M+, 25), 256 (5), 166 (25), 150 (76), 136 (67), 105 (100). HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{1} \mathrm{O}_{2}$: 271.1361; found 271.1401.
(1S,2S,4S)-2-(Benzoyloxymethyl)-(E/Z)-5-ethylidene-1azabicyclo[2.2.2]octane (6d). 4b (7.40 g, 21.1 mmol) was allowed to react according to the general procedure to afford $\mathbf{6 d}(85 \%, 4.87 \mathrm{~g}, 18.0 \mathrm{mmol})$. IR $\left(\mathrm{CHCl}_{3}\right)(v): 3008,2944,1716$, $1600,1448,1276,1116,1024 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz) (δ): 8.08-8.04 (M, 2 H, Ar-H), 7.55-7.50 (m, 1 H, Ar-H), 7.457.37 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 5.28-5.21 (m, $1 \mathrm{H}, \mathrm{H}-10$), 4.48-4.33/ 4.47-4.42 (dd, 1 H, J 11.5, 8.2 Hz, H-9), 4.32-4.27/4.33-4.28 (dd, 1 H, J 11.5, $5.8 \mathrm{~Hz}, \mathrm{H}-9$), 3.56-3.53 (m, $1 \mathrm{H}, \mathrm{H}-7$), 3.323.23 (m, 1 H, H-6), 3.21-3.11 (m, 1 H, H-6), 2.87-2.78 (m, 2 H, H-7, H-2), 2.37-2.33 (m, $1 \mathrm{H}, \mathrm{H}-4$), 1.94-1.85 (m, $1 \mathrm{H}, \mathrm{H}-3$), 1.69-1.62 (m, 2 H, H-8), 1.61/1.53 (m, 3 H, H-11), 1.41-1.32 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3$). ${ }^{13} \mathrm{C}$ NMR (100 MHz) (δ): 166.74 (C, C-12), 140.39/139.34 (C, C-5), 132.96 (CH, Ar-H), 130.13 (C, C-13), 129.51 (CH, Ar-H), 128.32 (CH, Ar-H), 114.94/ 114.49 (CH, $\mathrm{C}-10), 65.85\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 57.79 / 55.51\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 55.50 / 55.21$ $(\mathrm{CH}, \mathrm{C}-2), 41.93\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 32.86(\mathrm{CH}, \mathrm{C}-4), 31.63 / 30.75\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-8), 27.97 / 26.75\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 12.73 / 12.42\left(\mathrm{CH}_{3}, \mathrm{C}-11\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}$: 271 (${ }^{+}$, 37), 256 (5), 166 (20), 150 (62), 136 (45), 105 (100). HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{1} \mathrm{O}_{2}$: 271.1572; found 271.1571.

General Procedure for the Silylation of 5a and 6a. Triethylamine (1.3 equiv) was added to a solution of $\mathbf{5 a}$ or $\mathbf{6 a}$ (1 equiv) in abs $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at rt. After the mixture was stirred under argon for 15 min, DMAP (0.1 equiv) and the corresponding silyl chloride (1.1 equiv) were added at $0{ }^{\circ} \mathrm{C}$, and the homogeneous mixture was stirred for 16 h at rt , followed by extraction with saturated aqueous NaHCO_{3}. The combined organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, evaporated, and purified by chromatography ($\mathrm{EA} / \mathrm{MeOH} 20: 1$) to yield silyl ethers $\mathbf{5 b}, \mathbf{c}$ and 6b,c, respectively, as inseparable E / Z mixtures.
(1S,2R,4S)-2-(tert-Butyldimethylsilyloxymethyl)-(E/Z)-5-ethylidene-1-azabicyclo[2.2.2]-octane (5b). 5a (6.58 g, $39.4 \mathrm{mmol})$ and TBDMSCI $(6.50 \mathrm{~g}, 43.3 \mathrm{mmol})$ were allowed to react according to the general procedure to afford $\mathbf{5 b}$ (69%, $7.64 \mathrm{~g}, 27.2 \mathrm{mmol}, \mathrm{E} / \mathrm{Z}$ ratio $2.65: 1$). IR $\left(\mathrm{CHCl}_{3}\right)(v): 2952$, $2928,1464,1256,1104,1028 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})(\delta)$: 5.18-5.12/5.11-5.06 (m, 1 H, H-10), 3.73-3.69/3.72-3.68 (dd, $1 \mathrm{H}, \mathrm{J} 10.1,5.8 \mathrm{~Hz}, \mathrm{H}-9)$, $3.60-3.52$ (m, $2 \mathrm{H}, \mathrm{H}-9, \mathrm{OH}$), 3.29-3.24/3.21-3.16 (d, 1 H , J $17.5 \mathrm{~Hz}, \mathrm{H}-6)$, 2.95-2.74 (m, 4 H , H-6, H-7, H-2), 2.33-2.28 (m, 1 H, H-4), 1.82-1.76 (m, 1 H, $\mathrm{H}-3$), 1.69-1.60 (m, $2 \mathrm{H}, \mathrm{H}-8$), 1.59-1.56/1.49-1.46 (m, 3 H , $\mathrm{H}-11), 1.46-1.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 0.92-0.88\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $0.08-0.04\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{SiCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz})(\delta): 142.35 /$ 141.21 (C, C-5), 112.81/112.39 (CH, C-10), 65.91 ($\mathrm{CH}_{2}, \mathrm{C}-9$), $57.35(\mathrm{CH}, \mathrm{C}-2), 51.26 / 50.46\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 50.16 / 48.85\left(\mathrm{CH}_{2}, \mathrm{C}-7\right)$, 33.26 (CH, C-4), 31.48/30.49 (CH2, C-8), 27.54/26.66 ($\left.\mathrm{CH}_{2}, \mathrm{C}-3\right)$, $25.98\left(\mathrm{CH}_{3}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.81\left(\mathrm{CH}_{3}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.78\left(\mathrm{CH}_{3}\right.$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.39 / 18.08\left(\mathrm{C}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 12.56 / 12.23\left(\mathrm{CH}_{3}, \mathrm{C}-11\right)$, $-3.42\left(\mathrm{CH}_{3}, \mathrm{SiCH}_{3}\right),-5.33\left(\mathrm{CH}_{3}, \mathrm{SiCH}_{3}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 281\left(\mathrm{M}^{+}\right.$, 23), 266 (17), 224 (100), 149 (16), 136 (31). HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{NOSi}$: 281.2174; found 281.2169.
(1S,2S,4S)-2-(tert-Butyldimethylsilyloxymethyl)-(E/Z)-5-ethylidene-1-azabicyclo[2.2.2]-octane (6b). 6a (8.80 g, $52.7 \mathrm{mmol})$ and TBDMSCI ($8.69 \mathrm{~g}, 58.0 \mathrm{mmol}$) were allowed to react according to the general procedure to afford $\mathbf{6 b}$ (73%, $10.81 \mathrm{~g}, 38.47 \mathrm{mmol}, \mathrm{E} / \mathrm{Z}$ ratio $5: 1$). IR $\left(\mathrm{CHCl}_{3}\right)(v): 2952,2928$, $1472,1256,1108,1004 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz) (δ): $5.34-$ 5.25 (m, $1 \mathrm{H}, \mathrm{H}-10$), $4.01-3.96$ (dd, $1 \mathrm{H}, \mathrm{J} 11.0,5.0 \mathrm{~Hz}, \mathrm{H}-9$), 3.76-3.72 (dd, 1 H, J 11.0, $5.2 \mathrm{~Hz}, \mathrm{H}-9), 3.67-3.62$ (d, 1 H , J $18.7 \mathrm{~Hz}, \mathrm{H}-6$), 3.62-3.57 (m, $1 \mathrm{H}, \mathrm{H}-7$), 3.42-3.33 (m, 1 H , H-6), 3.12-3.03 (m, 1 H, H-2), 2.92-2.83 (m, 1 H, H-7), 2.452.41 (m, $1 \mathrm{H}, \mathrm{H}-4$), 1.81-1.60 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-8, \mathrm{H}-3$), 1.531.51 (d, $3 \mathrm{H}, \mathrm{J} 6.9 \mathrm{~Hz}, \mathrm{H}-11$), $0.91-0.86\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $0.09-0.05\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{SiCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz) (δ): 144.23/ 143.16 (C, C-5), 116.41/115.96 (CH, C-10), 64.18 ($\mathrm{CH}_{2}, \mathrm{C}-9$), $58.64 / 58.33(\mathrm{CH}, \mathrm{C}-2), 55.72\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 43.39\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 32.53$ ($\mathrm{CH}, \mathrm{C}-4$), 29.53/28.73 ($\left.\mathrm{CH}_{2}, \mathrm{C}-8\right), 26.66 / 25.13\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 25.93$ $\left(\mathrm{CH}_{3}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.74\left(\mathrm{CH}_{3}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.59\left(\mathrm{CH}_{3}, \mathrm{SiC}-\right.$ $\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 18.29 / 18.04\left(\mathrm{C}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 12.76 / 12.55\left(\mathrm{CH}_{3}, \mathrm{C}-11\right)$, $-3.48\left(\mathrm{CH}_{3}, \mathrm{SiCH}_{3}\right),-5.33\left(\mathrm{CH}_{3}, \mathrm{SiCH}_{3}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 282\left(\mathrm{M}^{+}+1\right.$, 18), 281 (${ }^{+}$, 6), 266 (14), 224 (100), 149 (12), 136 (23). HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{NOSi}$: 281.2174; found 281.2175 .
(1S,2R,4S)-2-(tert-Butyldiphenylsilyloxymethyl)-(E/Z)-5-ethylidene-1-azabicyclo[2.2.2]-octane (5c). 5a (4.50 g, 27.0 mmol) and TBDPSCI ($7.71 \mathrm{~mL}, 29.6 \mathrm{mmol}$) were allowed
to react according to the general procedure to afford 5c (94\%, $10.26 \mathrm{~g}, 25.33 \mathrm{mmol}$). IR $\left(\mathrm{CHCl}_{3}\right)(v): 3000,2932,1600,1572$, $1428,1260,1112,1024 \mathrm{~cm}^{-1}$. ${ }^{1}$ H NMR (400 MHz) (δ): $7.72-$ 7.68 (m, $4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.46-7.37 (m, $6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 5.25-5.18/ 5.14-5.06 (m, 1 H, H-10), 3.85-3.74 (m, 2 H, H-9), 3.71 (bs, 1 H, OH), 3.37-3.32 (d, $1 \mathrm{H}, \mathrm{J} 17.4 \mathrm{~Hz}, \mathrm{H}-6$), 3.09-2.95 (m, 2 H, H-7, H-6), 2.94-2.80 (m, 2 H, H-7, H-2), 2.40-2.36 (m, 1 $\mathrm{H}, \mathrm{H}-4), 1.89-1.83$ (m, 1 H, H-3), 1.79-1.63 (m, 3H, H-8, H-3), $1.62-1.58 / 1.49-1.46(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-11), 1.09-1.05(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz})(\delta): 141.00 / 140.36(\mathrm{C}, \mathrm{C}-5)$, $135.70(\mathrm{CH}, \mathrm{Ar}-\mathrm{H}), 133.49(\mathrm{C}, \mathrm{Ph}-\mathrm{Si}), 129.60(\mathrm{CH}, \mathrm{Ar}-\mathrm{H})$, 127.67 (CH, Ar-H), 113.51/113.06 (CH, C-10), 66.28/65.97 $\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 57.37 / 57.20(\mathrm{CH}, \mathrm{C}-2), 50.00 / 50.18\left(\mathrm{CH}_{2}, \mathrm{C}-6\right)$, 49.34/48.72 ($\left.\mathrm{CH}_{2}, \mathrm{C}-7\right)$, $33.08(\mathrm{CH}, \mathrm{C}-4), 30.80 / 29.97\left(\mathrm{CH}_{2}, \mathrm{C}-8\right)$, 27.70/26.29 $\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 26.91\left(\mathrm{CH}_{3}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 19.26(\mathrm{C}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 12.59 / 12.29\left(\mathrm{CH}_{3}, \mathrm{C}-11\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 405\left(\mathrm{M}^{+}, 8\right), 348$ (100), 266 (7), 199 (29), 136 (7). HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{NOSi}$: 405.2488; found 405.2489.
(1S,2S,4S)-2-(tert-Butyldiphenylsilyloxymethyl)-(E/Z)-5-ethylidene-1-azabicyclo[2.2.2]-octane (6c). 6a (5.00 g, $29.9 \mathrm{mmol})$ and TBDPSCI ($8.57 \mathrm{~mL}, 32.9 \mathrm{mmol}$) were allowed to react according to the general procedure to afford $\mathbf{6 c}(90 \%$, $10.91 \mathrm{~g}, 26.95 \mathrm{mmol})$. IR (CHCl_{3}) (v): 3000, 2932, 1600, 1472, $1428,1260,1112 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz) (δ): $7.74-7.68$ (m, $4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.47-7.34(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.29-5.19(\mathrm{~m}, 1 \mathrm{H}$, H-10), 3.84-3.77 (m, $2 \mathrm{H}, \mathrm{H}-9$), 3.53-3.47 (d, $1 \mathrm{H}, \mathrm{J} 18.3 \mathrm{~Hz}$, H-6), 3.43-3.37 (d, $1 \mathrm{H}, \mathrm{J} 18.3 \mathrm{~Hz}, \mathrm{H}-6$), $3.18-3.03$ (m, 1 H , H-7), 2.99-2.91 (m, 1 H, H-7), 2.74-2.62 (m, 1 H, H-2), 2.372.33 (m, 1 H, H-4), 1.92-1.79 (m, 2 H, H-3, H-8), 1.69-1.57 (m, 2 H, H-8, H-3), 1.53-1.49 (d, $3 \mathrm{H}, \mathrm{J} 6.7 \mathrm{~Hz}, \mathrm{H}-11$), 1.10/ $1.06\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz})(\delta): 141.59(\mathrm{C}$, $\mathrm{C}-5), 135.90(\mathrm{CH}, \mathrm{Ar}-\mathrm{H}), 134.92(\mathrm{CH}, \mathrm{Ar}-\mathrm{H}), 133.47$ (C, PhSi), 129.64 (CH, Ar-H), 127.56 (CH, $\mathrm{Ar}-\mathrm{H}$), 114.66/114.45 (CH, C-10), $66.39\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 58.17 / 57.34(\mathrm{CH}, \mathrm{C}-2), 55.59\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-6), 43.12 / 42.37\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 33.01(\mathrm{CH}, \mathrm{C}-4), 31.31\left(\mathrm{CH}_{2}, \mathrm{C}-8\right)$, 27.69/27.35 $\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 26.67\left(\mathrm{CH}_{3}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 19.27(\mathrm{C}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 12.71 / 12.39\left(\mathrm{CH}_{3}, \mathrm{C}-11\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 405(\mathrm{M}+, 3), 349$ (5), 199 (100). HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{NOSi}$: 405.2488; found 405.2476.

General Procedure for the Bishydroxylation of Silylated iso-quincoridines $\mathbf{5 b}$ - \mathbf{c} and silylated iso-quincorines $\mathbf{6 b}, \mathbf{c}$. Silylated iso-QCD 5b,c or silylated iso-QCI 6b,c, respectively, was added to a vigorously stirred two-phase system of $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3 equiv) and $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ (3 equiv) in tertbutyl al cohol/ $\mathrm{H}_{2} \mathrm{O}$ (1:1, 5 mL per mmol alkaloid). After 45 min solid osmium(VIII)oxide (0.01 equiv) was added in small portions, and the reaction mixture was stirred for 5 h under argon at rt, followed by extraction with saturated aqueous NaHCO_{3} and aq NaHSO_{3} (10\%). The combined organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, evaporated, and purified by chromatography (EA/MeOH 4:1) to yield the desired C10-C3 diols 7a,b and $\mathbf{8 a}, \mathbf{b}$ as inseparable mixtures of four possible diastereomers. In most cases, only the one or two most intensive NMR signals are given.
(1S,2R,4S,5R/S,10R/S)-2-(tert-Butyldimethylsilyloxy-methyl)-5-(5,10-dihydroxyethyl)-1-azabicyclo[2.2.2]octane ($\mathbf{7 a}$). $5 \mathbf{5 b}(3.00 \mathrm{~g}, 10.7 \mathrm{mmol})$ was allowed to react according to the general procedure to afford 7a ($73 \%, 2.45 \mathrm{~g}, 7.79$ mmol). IR $\left(\mathrm{CHCl}_{3}\right)(v): 3436,2952,2932,1460,1256,1120$, $1000 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz) (δ): 3.98-3.94 (dd, $1 \mathrm{H}, \mathrm{J} 12.4$, $6.2 \mathrm{~Hz}, \mathrm{H}-9$), 3.89-3.84 (dd, $1 \mathrm{H}, \mathrm{J} 10.7,4.4 \mathrm{~Hz}, \mathrm{H}-9$), 3.773.74 (m, $1 \mathrm{H}, \mathrm{H}-10$), 3.64-3.62 (m, $1 \mathrm{H}, \mathrm{H}-2$), 2.97-2.93/2.882.85 (d, $1 \mathrm{H}, \mathrm{J} 14.3 \mathrm{~Hz}, \mathrm{H}-6$), $2.90-2.69(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7$), 2.48-2.43/2.44-2.41 (d, J $14.6 \mathrm{~Hz}, \mathrm{H}-6$), 2.18-2.12 (m, $1 \mathrm{H}, \mathrm{H}-4$), 2.01-1.93/1.83-1.81 (m, 1 H, H-3), 1.62-1.33 (m, 3 H, H-8, H-3), 1.16-1.13/1.09-1.08 (m/d, 3 H, J $6.3 \mathrm{~Hz}, \mathrm{H}-11$), $0.90 /$ $0.89\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.11-0.10 / 0.07-0.04\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{SiCH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz})(\delta): 73.70(\mathrm{C}, \mathrm{C}-5), 69.64 / 67.54(\mathrm{CH}, \mathrm{C}-10)$, 66.74/65.83 ($\left.\mathrm{CH}_{2}, \mathrm{C}-9\right), 56.32 / 55.72(\mathrm{CH}, \mathrm{C}-2), 55.53 / 54.29$ $\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 49.82 / 49.13\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 29.68 / 28.35(\mathrm{CH}, \mathrm{C}-4), 25.36$ $\left(\mathrm{CH}_{3}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.27 / 24.75\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 21.79 / 20.55\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-3), 17.85\left(\mathrm{C}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 15.66 / 15.57\left(\mathrm{CH}_{3}, \mathrm{C}-11\right),-6.03\left(\mathrm{CH}_{3}\right.$, SiCH_{3}). MS m/z: 315 (M+,10), 300 (11), 258 (89), 170 (100); FAB-MS $316\left(M^{+}+1,100\right)$. HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{Si}$: 315.2229; found 315.2228.
(1S,2S,4S,5R/S,10R/S)-2-(tert-Butyldimethylsilyloxy-methyl)-5-(5,10-di hydroxyethyl)-1-azabicyclo[2.2.2]octane ($8 \mathbf{a}$). $6 \mathbf{6 b}(6.00 \mathrm{~g}, 21.4 \mathrm{mmol})$ was allowed to react according to the general procedure to afford $\mathbf{8 a}(79 \%, 5.31 \mathrm{~g}$, 16.9 mmol). IR (CHCl_{3}) (ν): 3420, 2956, 2928, 1472, 1256, $1120,1092,1052 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz) (δ): $3.92-3.83$ (m, $1 \mathrm{H}, \mathrm{H}-9), 3.73-3.61(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-9, \mathrm{H}-10), 3.11-2.96(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-7, \mathrm{H}-2), 2.75-2.71$ (d, $1 \mathrm{H}, \mathrm{J} 14.3 \mathrm{~Hz}, \mathrm{H}-6$), 2.57-2.45 (d, J $14.6 \mathrm{~Hz}, \mathrm{H}-6)$, $2.49-2.43(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 2.15-2.11(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-4), 1.99-1.95(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.84-1.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 1.55-$ 1.40 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-8$), $1.38-1.27$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3$), 1.19-1.14 (m, 3 $\mathrm{H}, \mathrm{H}-11), 0.89\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.07-0.04\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{SiCH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR (100 MHz) (δ): 73.39/73.14 (C, C-5), 69.38/68.52 (CH, $\mathrm{C}-10), 65.90 / 65.59$ ($\left.\mathrm{CH}_{2}, \mathrm{C}-9\right), 61.56 / 61.41$ ($\left.\mathrm{CH}_{2}, \mathrm{C}-6\right), 57.18 /$ 56.38 (CH, C-2), 41.97/41.84 ($\mathrm{CH}_{2}, \mathrm{C}-7$), 29.54/29.16 (CH, C-4), $26.58 / 25.28\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 25.98\left(\mathrm{CH}_{3}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 23.09 / 21.63$ $\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 18.38\left(\mathrm{C}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 16.32/16.12 ($\left.\mathrm{CH}_{3}, \mathrm{C}-11\right),-5.33$ $\left(\mathrm{CH}_{3}, \mathrm{SiCH}_{3}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 315\left(\mathrm{M}^{+}, 10\right), 298(16), 58(100), 170$ (73); FAB-MS 316 (M $++1,100$), 298 (17). HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{Si}$: 315.2229; found 315.2230.
($1 \mathrm{~S}, \mathbf{2 R}, 4 \mathrm{~S}, 5 \mathrm{5R} / \mathrm{S}, 10 \mathrm{R} / \mathrm{S}$)-2-(tert-Butyldiphenylsilyloxy-methyl)-5-(5,10-di hydroxyethyl)-1-azabicyclo[2.2.2]octane (7 b). 5 c ($10.00 \mathrm{~g}, 24.69 \mathrm{mmol}$) was allowed to react according to the general procedure to afford $\mathbf{7 b}(78 \%, 8.45 \mathrm{~g}$, $19.3 \mathrm{mmol})$. IR (CHCl_{3}) (v): 3568, 2934, 1589, 1471, 1251, $1113,997 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz) (δ): $7.70-7.63(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{Ar}-\mathrm{H}), 7.43-7.34(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.84-3.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-9$, $\mathrm{H}-10$), 3.60-3.55 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-9$), $2.90-2.75$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-7$), $2.65-2.61$ (d, $1 \mathrm{H}, \mathrm{J} 14.7 \mathrm{~Hz}, \mathrm{H}-6$), 2.43-2.39 (d, $1 \mathrm{H}, \mathrm{J} 14.7$ $\mathrm{Hz}, \mathrm{H}-6), 2.11-2.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 1.96-1.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3)$, $1.69-1.59(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 1.57-1.43(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 1.39-1.29$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3$), 1.13-1.11/0.98-0.97 (d, $3 \mathrm{H}, \mathrm{J} 6.2 \mathrm{~Hz}, \mathrm{H}-11$), $1.07 / 1.05\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz) (δ): 135.71 (CH, Ar-H), 133.49 (C, Ar-Si), 129.67 (CH, Ar-H), 127.66 (CH, Ar-H), 73.27/72.68 (C, C-5), 69.53/67.56 (CH, C-10), $66.87 / 66.23$ ($\mathrm{CH}_{2}, \mathrm{C}-9$), $56.56 / 55.68$ ($\mathrm{CH}, \mathrm{C}-2$), $55.00 / 54.13$ $\left(\mathrm{CH}_{2}, \mathrm{C}-6\right)$, 49.61/49.05 ($\left.\mathrm{CH}_{2}, \mathrm{C}-7\right), 29.67 / 28.90(\mathrm{CH}, \mathrm{C}-4)$, 26.92 $\left(\mathrm{CH}_{3}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.02 / 24.22\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 22.54 / 21.21\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-3), 19.24\left(\mathrm{C}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 16.26 / 16.19\left(\mathrm{CH}_{3}, \mathrm{C}-11\right)$. MS m/z: $439\left(\mathrm{M}^{+}, 4\right), 421$ (3), 382 (100), 364 (8), 170 (28). HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{NO}_{3} \mathrm{Si}$: 439.2542 ; found 439.2535 .
(1S,2S,4S,5R/S,10R/S)-2-(tert-Butyldiphenylsilyloxy-methyl)-5-(5,10-di hydroxyethyl)-1-azabicyclo[2.2.2]octane (8 b). $\mathbf{6 c}$ ($10.00 \mathrm{~g}, 24.69 \mathrm{mmol}$) was allowed to react according to the general procedure to afford $\mathbf{8 b}(84 \%, 9.11 \mathrm{~g}$, $20.7 \mathrm{mmol})$. IR (CHCl_{3}) (ν): $3568,2932,1589,1472,1427$, $1265,1112,998 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz) (δ): $7.69-7.64(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $7.42-7.34(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.85-3.66$ (m, 3 H , $\mathrm{H}-9, \mathrm{H}-10), 3.13-3.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 3.02-2.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2)$, $2.73-2.66(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 2.52-2.48(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J} 14.3 \mathrm{~Hz}, \mathrm{H}-6)$, 2.46-2.38(m,1 H, H-7), 2.12-2.07 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4$), 1.93-1.78 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3$), 1.54-1.35 (m, $2 \mathrm{H}, \mathrm{H}-8$), 1.29-1.22 (m, 1 H , $\mathrm{H}-3), 1.16-1.10(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-11), 1.05\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz) (δ): 135.65 (CH, Ar-H), 133.75 (C, Ar-Si), 129.67 (CH, Ar-H), 127.68 (CH, Ar-H), 73.39/73.10 (C, C-5), $69.34 / 68.36$ ($\mathrm{CH}, \mathrm{C}-10$), $66.69 / 66.48$ ($\mathrm{CH}_{2}, \mathrm{C}-9$), $61.56 / 61.42$ $\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 57.02 / 56.28$ ($\mathrm{CH}, \mathrm{C}-2$), $42.05 / 41.99\left(\mathrm{CH}_{2}, \mathrm{C}-7\right)$, 29.59/29.15 ($\mathrm{CH}, \mathrm{C}-4$), $26.90\left(\mathrm{CH}_{3}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.84 / 25.52$ $\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 23.13 / 21.59\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 19.27\left(\mathrm{C}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 16.29 /$ $16.09\left(\mathrm{CH}_{3}, \mathrm{C}-11\right)$. MS m/z: 439 ($\mathrm{M}^{+}, 2$), 408 (8), 383 (36), 351 (100), 199 (14). HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{3} \mathrm{NO}_{3} \mathrm{Si}$: 439.2542 ; found 439.2539.

General procedure for the diol cleavage of silylated diols $\mathbf{7 a , b}$ and $\mathbf{8 a , b}$. A saturated solution of NaIO_{4} (1.3 equiv) in $\mathrm{H}_{2} \mathrm{O}$ was added dropwise to a solution of the silyl-protected diol (1 equiv) in tert-butanol. The mixture was stirred vigorously for 2 h at rt under argon, treated with NaHCO_{3} and extracted with CHCl_{3}. After it was dried (over MgSO_{4}), the organic layer was concentrated, and the crude product was purified by column chromatography (EA/MeOH 20:1) to yield the desired C5-ketones $\mathbf{9 a} \mathbf{a} \mathbf{b}$ and $\mathbf{1 0 a} \mathbf{a}, \mathbf{b}$, respectively.
(1S,2R,4S)-2-(tert-ButyIdimethylsilyloxymethyl)-1-azabicyclo[2.2.2]octan-5-one (9a). 7a ($630 \mathrm{mg}, 2.00 \mathrm{mmol}$) was allowed to react according to the general procedure to afford $9 \mathbf{a}(91 \%, 489 \mathrm{mg}, 1.82 \mathrm{mmol})$. IR (CHCl_{3}) (v): 2952,

2928, 1728, 1468, 1404, 1256, 1124, 1096, $1028 \mathrm{~cm}^{-1} .^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})(\delta): 3.71-3.66(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J} 19.5,5.1 \mathrm{~Hz}, \mathrm{H}-6), 3.69-$ 3.68 (d, 1H, J $5.3 \mathrm{~Hz}, \mathrm{H}-9), 3.68-3.67$ (d, $1 \mathrm{H}, \mathrm{J} 5.3 \mathrm{~Hz}, \mathrm{H}-9$), 3.10-3.04 (d, 1 H, J $19.5 \mathrm{~Hz}, \mathrm{H}-6$), 3.07-3.02 (m, $1 \mathrm{H}, \mathrm{H}-7$), 3.01-2.95 (m, $1 \mathrm{H}, \mathrm{H}-2$), 2.91-2.83 (ddd, $1 \mathrm{H}, \mathrm{J} 14.7,10.0$, $7.1 \mathrm{~Hz}, \mathrm{H}-7), 2.47-2.45$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4$), 2.09-2.00 (m, $1 \mathrm{H}, \mathrm{H}-3$), 1.99-1.91 (m, $2 \mathrm{H}, \mathrm{H}-8$), 1.90-1.84 (m, $1 \mathrm{H}, \mathrm{H}-3$), $0.87(\mathrm{~s}, 9$ $\left.\mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz) (δ): $219.76(\mathrm{C}, \mathrm{C}-5), 65.52\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 58.83$ $\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 56.28(\mathrm{CH}, \mathrm{C}-2), 49.77\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 40.72(\mathrm{CH}, \mathrm{C}-4)$, $27.90\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 25.87\left(\mathrm{CH}_{3}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.04\left(\mathrm{CH}_{2}, \mathrm{C}-8\right)$, $18.26\left(\mathrm{C}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right),-5.51\left(\mathrm{CH}_{3}, \mathrm{SiCH}_{3}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 269\left(\mathrm{M}^{+}\right.$, 5), 254 (13), 241 (33), 212 (69), 184 (100), 156 (10); FAB-MS $270\left(M^{+}+1,100\right), 184(25)$. HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{Si}$: 269.1811; found 269.1812.
(1S,2S,4S)-2-(tert-B utyldimethylsilyloxymethyl)-1-azabicyclo[2.2.2]octan-5-one (10a). 8a ($1.00 \mathrm{~g}, 3.17 \mathrm{mmol}$) was allowed to react according to the general procedure to afford 10a ($87 \%, 0.740 \mathrm{~g}, 2.76 \mathrm{mmol}$). IR $\left(\mathrm{CHCl}_{3}\right)(v): 2956$, $2928,1728,1472,1408,1256,1116,1048,1004 \mathrm{~cm}^{-1} .^{1}{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})(\delta): 3.79-3.76$ (dd, $1 \mathrm{H}, \mathrm{J} 10.4,5.9 \mathrm{~Hz}, \mathrm{H}-9), 3.76-$ 3.72 (dd, 1 H, J 10.4, 5.9 Hz, H-9), 3.36-3.31 (d, 1 H, J 18.4 $\mathrm{Hz}, \mathrm{H}-6$), $3.29-3.24$ (d, $1 \mathrm{H}, \mathrm{J} 18.4 \mathrm{~Hz}, \mathrm{H}-6$), 3.32-3.25 (m, 1 $\mathrm{H}, \mathrm{H}-7$), 2.99-2.90 (m, $1 \mathrm{H}, \mathrm{H}-2$), 2.82-2.73 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-7$), 2.46-2.42 (m, 1 H, H-4), 2.09-2.02 (m, 1 H, H-3), 1.96-1.87 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-8$), 1.84-1.78 (ddd, $1 \mathrm{H}, \mathrm{J} 13.5,7.6,2.2 \mathrm{~Hz}, \mathrm{H}-3$), $0.90\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.07(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{SiCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz) (δ): $219.89(\mathrm{C}, \mathrm{C}-5), 65.36\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-9), 64.79\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 57.64(\mathrm{CH}, \mathrm{C}-2), 41.79\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 40.45$ $(\mathrm{CH}, \mathrm{C}-4), 28.67\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 25.93\left(\mathrm{CH}_{3}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.39$ $\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 18.33\left(\mathrm{C}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right),-5.40\left(\mathrm{CH}_{3}, \mathrm{SiCH}_{3}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}:$ 269 (${ }^{+}, 5$), 254 (13), 241 (38), 212 (60), 184 (100), 156 (11); FAB-MS $270\left(\mathrm{M}^{+}+1,100\right)$, 184 (24). HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{27^{-}}$ $\mathrm{NO}_{2} \mathrm{Si}$: 269.1811; found 269.1806.
(1S,2R,4S)-2-(tert-Butyldiphenylsilyloxymethyl)-1-azabicyclo[2.2.2]octan-5-one (9b). 7b ($3.45 \mathrm{~g}, 7.86 \mathrm{mmol}$) was allowed to react according to the general procedure to afford $9 \mathbf{~ b}(93 \%, 2.87 \mathrm{~g}, 7.31 \mathrm{mmol})$. IR $\left(\mathrm{CHCl}_{3}\right)(v): 3052,2956$, 1728, 1471, 1427, 1265, 1113, $1026 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz) (δ): 7.69-7.65 (m, $4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.47-7.37 (m, $6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 3.79-3.75 (dd, $1 \mathrm{H}, \mathrm{J} 10.5,5.5 \mathrm{~Hz}, \mathrm{H}-9$), $3.75-3.70$ (dd, 1 H , J 10.5, 5.5 Hz, H-9), 3.69-3.63 (dd, 1 H, J $19.3,1.0 \mathrm{~Hz}, \mathrm{H}-6$), 3.11-3.06 (d, 1 H, J $18.8 \mathrm{~Hz}, \mathrm{H}-6$), 3.09-3.02 (m, $2 \mathrm{H}, \mathrm{H}-7$), 2.92-2.84 (m, $1 \mathrm{H}, \mathrm{H}-2), 2.52-2.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 2.13-2.07$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3$), $2.06-1.92(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-3), 1.07$ ($\mathrm{s}, 9 \mathrm{H}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz) (δ): 219.74 (C, C-5), 135.64 ($\mathrm{CH}, \mathrm{Ar}-\mathrm{H}$), 133.27 ($\mathrm{C}, \mathrm{Ar}-\mathrm{Si}$), $129.75(\mathrm{CH}, \mathrm{Ar}-\mathrm{H}), 127.75$ (CH, $\mathrm{Ar}-\mathrm{H}$), $66.18\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 58.79\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 56.28(\mathrm{CH}$, $\mathrm{C}-2), 49.77\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 40.71(\mathrm{CH}, \mathrm{C}-4), 28.02\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 26.84$ $\left(\mathrm{CH}_{3}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.17\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 19.22\left(\mathrm{C}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right) . \mathrm{MS}$ m/z: 378 ($\mathrm{M}^{+}-\mathrm{Me}, 1$), 365 (15), 336 (100), 308 (92), 199 (16), 183 (12); FAB-MS 394 (${ }^{+}+1,65$), 336 (100). HRMS cal cd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{2} \mathrm{Si}-\mathrm{Me}: 378.8189$; found 378.8176 .
(1S,2S,4S)-2-(tert-B utyldiphenylsilyloxymethyl)-1-azabicyclo[2.2.2]octan-5-one (10b). 8b ($4.00 \mathrm{~g}, 9.11 \mathrm{mmol}$) was allowed to react according to the general procedure to afford 10b $(90 \%, 3.22 \mathrm{~g}, 8.20 \mathrm{mmol})$. IR $\left(\mathrm{CHCl}_{3}\right)(v): 3072$, 2958, 1729, 1589, 1472, 1428, 1230, 1113, 1046, $999 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz) (δ): 7.72-7.68 (m, $4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.48-7.39 (m, 6H, Ar-H), 3.85-3.83 (dd, 1 H, J $10.5,6.0 \mathrm{~Hz}, \mathrm{H}-9), 3.84-$ 3.82 (dd, 1 H, J 10.5, $5.8 \mathrm{~Hz}, \mathrm{H}-9$), $3.40-3.35$ (d, $1 \mathrm{H}, \mathrm{J} 18.6$ $\mathrm{Hz}, \mathrm{H}-6$), $3.33-3.28$ ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J} 18.6 \mathrm{~Hz}, \mathrm{H}-6$), $3.32-3.23$ ($\mathrm{m}, 1$ $\mathrm{H}, \mathrm{H}-7), 3.09-3.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 2.87-2.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7)$, 2.51-2.47 (m, 1 H, H-4), 2.15-2.07 (m, 1 H, H-3), 1.93-1.87 (m, $3 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-3), 1.09\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz})(\delta): 218.57(\mathrm{C}, \mathrm{C}-5), 135.62(\mathrm{CH}, \mathrm{Ar}-\mathrm{H})$, $133.26(\mathrm{C}, \mathrm{Ar}-$ $\mathrm{Si}), 129.81(\mathrm{CH}, \mathrm{Ar}-\mathrm{H}), 127.77(\mathrm{CH}, \mathrm{Ar}-\mathrm{H}), 65.70\left(\mathrm{CH}_{2}, \mathrm{C}-9\right)$, $64.38\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 57.63(\mathrm{CH}, \mathrm{C}-2), 41.70\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 40.31(\mathrm{CH}$, $\mathrm{C}-4), 28.57\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 26.88\left(\mathrm{CH}_{3}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.07\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-8$), 19.24 ($\mathrm{C}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}$). MS m/z: 378 ($\mathrm{M}^{+}-\mathrm{Me}, 2$), 365 (19), 336 (100), 308 (93), 183 (14); FAB-MS 394 (${ }^{+}+1,100$), 365 (20), 336 (41). HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{2} \mathrm{Si}-\mathrm{Me}: 378.8189$; found 378.8180.
(1S,2R,4S)-2-(Hydroxymethyl)-1-azabicyclo[2.2.2]octan-5-one (9d). 9a ($137 \mathrm{mg}, 0.51 \mathrm{mmol}$) was allowed to react
according to the general procedure to afford 9d ($97 \%, 77 \mathrm{mg}$, $0.49 \mathrm{mmol})$. IR (CHCl_{3}) (v): 3360, 2964, 1728, 1456, 1404, 1232, 1148, 1052, $1020 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ $\mathrm{CD}_{3} \mathrm{OD}$) (δ): $3.50-3.38$ (m, $2 \mathrm{H}, \mathrm{H}-9$), 3.37-3.27 (m, $2 \mathrm{H}, \mathrm{H}-2$, OH), 3.15-2.98 (m, 3 H, H-6, H-7), 2.95-2.87 (m, $1 \mathrm{H}, \mathrm{H}-7$), 2.44-2.40 (m, 1 H, H-4), 2.11-1.95 (m, 2 H, H-3, H-8), 1.661.59 (m, $1 \mathrm{H}, \mathrm{H}-8$), $1.44-1.34$ (m, $1 \mathrm{H}, \mathrm{H}-3$). ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right)(\delta): 216.41(\mathrm{C}, \mathrm{C}-5), 62.60\left(\mathrm{CH}_{2}, \mathrm{C}-9\right)$, 56.65 (CH, C-2), $56.46\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 49.20\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 40.21(\mathrm{CH}$, $\mathrm{C}-4), 27.56\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 25.31\left(\mathrm{CH}_{2}, \mathrm{C}-8\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 155\left(\mathrm{M}^{+}, 21\right)$, 127 (100), 110 (43). HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{2}$: 155.0946; found 155.0944. Anal. Cal cd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}$: C 61.92 , H 8.44, N 9.03; found C 62.08, H 8.59, N 9.25.
(1S,2S,4S)-2-(Hydroxymethyl)-1-azabicyclo[2.2.2]octan-5-one (10d). 10b ($1.80 \mathrm{~g}, 4.58 \mathrm{mmol}$) was allowed to react according to the general procedure to afford 10d (96\%, 682 $\mathrm{mg}, 4.39 \mathrm{mmol})$. IR $\left(\mathrm{CHCl}_{3}\right)(v): 3380,2964,1732,1456,1408$, 1264, 1232, 1080, $1032 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ $\mathrm{CD}_{3} \mathrm{OD}$) (δ): 3.64-3.56 (m, $2 \mathrm{H}, \mathrm{H}-9$), 3.39-3.32 (d, $1 \mathrm{H}, \mathrm{J}$ $17.8 \mathrm{~Hz}, \mathrm{H}-6$), 3.25-3.19 (d, $1 \mathrm{H}, \mathrm{J} 18.1 \mathrm{~Hz}, \mathrm{H}-6$), 3.18-3.12 (m, 1 H, H-7), 3.07-2.99 (m, 1 H, H-2), 2.79-2.71 (m, 1 H H-7), 2.42-2.39 (m, 1 H, H-4), 2.09-2.01 (m, 1 H, H-3), 1.901.85 (m, 1 H, H-8), 1.68-1.61 (m, 1 H, H-8), 1.47-1.38 (m, 1 $\mathrm{H}, \mathrm{H}-3$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}$) (δ): 218.60 (C, C-5), $64.17\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 62.48\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 57.72(\mathrm{CH}, \mathrm{C}-2)$, $39.89(\mathrm{CH}, \mathrm{C}-4), 39.64\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 28.53\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 25.21\left(\mathrm{CH}_{2}\right.$, C-8). MS m/z: 155 (M+, 17), 127 (100), 110 (42). HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{2}$: 155.0946; found 155.0947. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}: \mathrm{C} 61.92, \mathrm{H} 8.44, \mathrm{~N} 9.03$; found C 62.16, H $8.53, \mathrm{~N}$ 9.31.
(1S,2R,4S)-2-(Triisopropylsilyloxymethyl)-1-azabicyclo-[2.2.2]octan-5-one (9c). Triethylamine ($0.240 \mathrm{~mL}, 1.74 \mathrm{mmol}$, 1.5 equiv) was added to a solution of 9d ($180 \mathrm{mg}, 1.16 \mathrm{mmol}$, 1 equiv) in abs $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at rt . After the solution was stirred under argon for 15 min , DMAP ($14 \mathrm{mg}, 0.12 \mathrm{mmol}, 0.1$ equiv) and triisopropylsilyl chloride ($0.32 \mathrm{~mL}, 1.5 \mathrm{mmol}, 1.3$ equiv) were added at $0^{\circ} \mathrm{C}$, and the homogeneous mixture was stirred for 16 h at rt , followed by extraction with saturated aqueous NaHCO_{3}. The combined organic layer was dried (over MgSO_{4}), evaporated, and purified by chromatography (EA/ $\mathrm{MeOH} 20: 1$) to yield silylated ketone $9 \mathrm{c}(91 \%, 329 \mathrm{mg}, 1.06$ $\mathrm{mmol})$. IR $\left(\mathrm{CHCl}_{3}\right)(v): 2946,1728,1464,1404,1233,1128$, 1068, $1029 \mathrm{~cm}^{-1} .^{1} \mathrm{H}$ NMR (400 MHz) (δ): 3.82-3.80 (d, 1 H , J $5.2 \mathrm{~Hz}, \mathrm{H}-9$), $3.76-3.74$ (d, $1 \mathrm{H}, \mathrm{J} 5.2 \mathrm{~Hz}, \mathrm{H}-9$), 3.76-3.70 (d, 1 H, J 19.7, H-6), 3.10-3.05 (d, 1 H, J $19.4 \mathrm{~Hz}, \mathrm{H}-6$), 3.093.04 (m, 1 H, H-7), 3.04-2.98 (m, 1 H, H-2), 2.91-2.83 (m, 1 $\mathrm{H}, \mathrm{H}-7$), 2.50-2.45 (m, 1 H, H-4), 2.09-1.91 (m, $4 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-8$, $\mathrm{H}-3), 1.14-0.94\left(\mathrm{~m}, 21 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz) (δ): $219.85(\mathrm{C}, \mathrm{C}-5), 66.10\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 59.09\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 56.46$ $(\mathrm{CH}, \mathrm{C}-2), 49.90\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 40.77(\mathrm{CH}, \mathrm{C}-4), 27.96\left(\mathrm{CH}_{2}, \mathrm{C}-3\right)$, $25.16\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 17.99\left(\mathrm{CH}_{3}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right), 11.88(\mathrm{CH}, \mathrm{Si}-$ $\left.\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 311\left(\mathrm{M}^{+}, 17\right), 284$ (19), 268 (71), 240 (100), 138 (6). HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{Si}: 311.2280$; found 311.2282.
(1S,2R,4S)-2-(Triphenylmethyloxymethyl)-1-azabicyclo-[2.2.2]octan-5-one (9e). Triethylamine ($0.21 \mathrm{~mL}, 1.5 \mathrm{mmol}$, 1.5 equiv) was added to a solution of 9 d ($155 \mathrm{mg}, 1.00 \mathrm{mmol}$, 1 equiv) in abs $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at rt . After the solution was stirred under argon for 15 min , DMAP ($12 \mathrm{mg}, 0.10 \mathrm{mmol}, 0.1$ equiv) and triphenylmethyl chloride ($363 \mathrm{mg}, 1.30 \mathrm{mmol}, 1.3$ equiv) were added at $0^{\circ} \mathrm{C}$, and the homogeneous mixture was stirred for 16 h at rt, followed by extraction with saturated aqueous NaHCO_{3}. The combined organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, evaporated and purified by chromatography (EA/ $\mathrm{MeOH} 20: 1$) to afford protected ketone $\mathbf{9 e}(88 \%, 349 \mathrm{mg}, 0.880$ $\mathrm{mmol})$. IR $\left(\mathrm{CHCl}_{3}\right)(v): 3062,2999,2950,1729,1597,1449$, 1230, 1080, 1033, $1001 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz) (δ): $7.45-$ 7.42 (m, 6 H, Ar-H), 7.30-7.26 (m, 6 H, Ar-H), 7.24-7.19 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 3.45-3.40 (d, $1 \mathrm{H}, \mathrm{J}$ 19.1, H-6), 3.28-3.23 (dd, $1 \mathrm{H}, \mathrm{J} 9.3,6.8 \mathrm{~Hz}, \mathrm{H}-9$), 3.22-3.14 (m, $1 \mathrm{H}, \mathrm{H}-2$), 3.123.03 (m, $1 \mathrm{H}, \mathrm{H}-7$), 3.09-3.04 (d, $1 \mathrm{H}, \mathrm{J} 18.8 \mathrm{~Hz}, \mathrm{H}-6$), 3.022.97 (dd, $1 \mathrm{H}, \mathrm{J} 9.3,5.5 \mathrm{~Hz}, \mathrm{H}-9$), 2.93-2.85 (m, $1 \mathrm{H}, \mathrm{H}-7$), 2.47-2.42 (m, 1 H, H-4), 2.15-2.08 (m, 1 H, H-3), 2.01-1.92 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-8$), $1.68-1.61$ (m, $1 \mathrm{H}, \mathrm{H}-3$). ${ }^{13} \mathrm{C}$ NMR (100 MHz) (δ): 219.67 (C, C-5), 143.81 (C, Ar-C), $128.65(\mathrm{CH}, \mathrm{Ar}-\mathrm{H})$,
$127.81(\mathrm{CH}, \mathrm{Ar}-\mathrm{H}), 127.02(\mathrm{CH}, \mathrm{Ar}-\mathrm{H}), 86.71\left(\mathrm{C}, \mathrm{Ph}_{3} \mathrm{CO}\right)$, $65.38\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 58.15\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 55.05(\mathrm{CH}, \mathrm{C}-2), 49.62\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-7), 40.58(\mathrm{CH}, \mathrm{C}-4), 28.72\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 25.27\left(\mathrm{CH}_{2}, \mathrm{C}-8\right) . \mathrm{MS}$ m/z: 397 ($\mathrm{M}^{+}, 1$), 369 (33), 243 (100), 187 (9), 136 (9). HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{2}$: 397.2042; found 397.2044.
(1S,2R,4S)-2-(Bromomethyl)-1-azabicyclo[2.2.2]octan-5-one (9f). Methanesulfonyl chloride ($0.39 \mathrm{~mL}, 5.0 \mathrm{mmol}, 1.3$ equiv) was added to a solution of unprotected ketone 9d (600 $\mathrm{mg}, 3.88 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}(1.08 \mathrm{~mL}, 7.74 \mathrm{mmol}, 2.0$ equiv) in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After having been stirred for 10 h at rt, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and extracted with saturated aqueous NaHCO_{3}. The organic layer was dried, the solvent evaporated, and the crude product ($83 \%, 748 \mathrm{mg}, 3.21 \mathrm{mmol}$) dissolved in abs dioxan (5 mL). Powdered lithium bromide ($838 \mathrm{mg}, 9.64 \mathrm{mmol}, 3.0$ equiv) was added, and the mixture was refluxed for 24 h at $110^{\circ} \mathrm{C}$. After addition of saturated aqueous NaHCO_{3}, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Purification by chromatography ($\mathrm{EA} / \mathrm{MeOH} 20: 1$) furnished the desired brominated ketone 9f ($81 \%, 565 \mathrm{mg}, 2.60 \mathrm{mmol}$) as a colorless crystalline solid. IR $\left(\mathrm{CHCl}_{3}\right)(v): 2963,1732,1473,1457,1230,1083,1032 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz) (δ): $3.57-3.52$ (dd, $1 \mathrm{H}, \mathrm{J} 10.4,8.2 \mathrm{~Hz}$, H-9), 3.49-3.45 (dd, 1 H, J $10.4,7.2 \mathrm{~Hz}, \mathrm{H}-9$), 3.45-3.40 (d, 1 H, J $19.7 \mathrm{~Hz}, \mathrm{H}-6$), $3.34-3.28$ (dd, $1 \mathrm{H}, \mathrm{J}$ 19.7, $2.3 \mathrm{~Hz}, \mathrm{H}-6$), 3.23-3.09 (m, 2 H, H-2, H-7), 2.89-2.81 (m, 1 H, H-7), 2.492.45 (m, 1 H, H-4), 2.33-2.25 (m, 1 H, H-3), 1.98-1.92 (m, 2 $\mathrm{H}, \mathrm{H}-8$), 1.68-1.61 (ddd, $1 \mathrm{H}, \mathrm{J}$ 13.7, 7.5, $2.2 \mathrm{~Hz}, \mathrm{H}-3$). ${ }^{13} \mathrm{C}$ NMR (100 MHz) (δ): $218.42(\mathrm{C}, \mathrm{C}-5), 64.69\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 57.55$ (CH, C-2), $40.17(\mathrm{CH}, \mathrm{C}-4), 39.76\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 34.15\left(\mathrm{CH}_{2}, \mathrm{C}-9\right)$, $31.81\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 25.37\left(\mathrm{CH}_{2}, \mathrm{C}-8\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 219\left(\mathrm{M}^{+}, 3\right), 217$ $\left(\mathrm{M}^{+}, 3\right), 191$ (10), 189 (10), 110 (100). HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{12}$ NOBr: 217.0102; found 217.0103.
General Procedure for the Reduction of C5-ketones $9 \mathrm{a}-\mathrm{e}$ and 10a,b with I-Selectride. A 1.0 M solution of L-Selectride in THF (1.5 equiv) was added dropwise within 5 min to a solution of the C5-ketone (1 equiv) in abs THF at $-90^{\circ} \mathrm{C}$. After it was stirred for 2 h at $-78^{\circ} \mathrm{C}$, the reaction mixture was warmed to $0^{\circ} \mathrm{C}$ within 4 h and then quenched with saturated aqueous NaHCO_{3}. The aqueous layer was extracted with CHCl_{3}, and the organic layer dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The resulting crude product was purified by column chromatography (EA/MeOH 6:1) to yield the corresponding quinuclidin-5-ols 11a-e and 12a,b.
(1S,2R,4S,5S)-2-(tert-Butyldimethylsilyloxymethyl)-1-azabicyclo[2.2.2]octan-5-ol (11a). 9a ($158 \mathrm{mg}, 0.590 \mathrm{mmol}$) was allowed to react according to the general procedure to afford anti-11a ($87 \%, 138 \mathrm{mg}, 0.510 \mathrm{mmol}$) with 62% de. IR $\left(\mathrm{CHCl}_{3}\right)(v): 2956,2932,1460,1432,1256,1128,1016 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz) (δ): 4.19-4.16 (dd, $1 \mathrm{H}, \mathrm{J} 11.8,3.2 \mathrm{~Hz}$, H-9), 4.15-4.09 (m, 1 H, H-5), 3.85-3.77 (m, 1 H, H-6), 3.723.66 (dd, 1 H, J 11.8, $4.9 \mathrm{~Hz}, \mathrm{H}-9$), $3.40-3.18$ (m, $3 \mathrm{H}, \mathrm{H}-7$, H-2), 3.14-3.09 (d, 1 H, J $13.7 \mathrm{~Hz}, \mathrm{H}-6$), 2.42-2.29 (m, 2 H , $\mathrm{H}-4, \mathrm{H}-3$), 1.95-1.88 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-8$), 1.78-1.62 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-8$, $\mathrm{H}-3), 0.86\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.06(\mathrm{~s}, 3$ $\mathrm{H}, \mathrm{SiCH}_{3}$). ${ }^{13} \mathrm{C}$ NMR (100 MHz) (δ): 63.91 (CH, C-5), 62.02 $\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 57.35(\mathrm{CH}, \mathrm{C}-2), 53.09\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 49.30\left(\mathrm{CH}_{2}, \mathrm{C}-7\right)$, 27.79 (CH , C-4), $25.89\left(\mathrm{CH}_{3}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 23.65\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 18.19$ $\left(\mathrm{C}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 16.53\left(\mathrm{CH}_{2}, \mathrm{C}-3\right),-5.43\left(\mathrm{CH}_{3}, \mathrm{SiCH}_{3}\right),-5.55$ $\left(\mathrm{CH}_{3}, \mathrm{SiCH}_{3}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 271\left(\mathrm{M}^{+}, 6\right), 256$ (9), 214 (100), 126 (14). HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{Si}$: 271.1967; found 271.1965.
(1S,2R,4S,5S)-2-(tert-Butyldiphenylsilyloxymethyl)-1-azabicyclo[2.2.2]octan-5-ol (11b). 9b ($680 \mathrm{mg}, 1.73 \mathrm{mmol}$) was allowed to react according to the general procedure to afford anti-11b ($82 \%, 560 \mathrm{mg}, 1.42 \mathrm{mmol}$) with 68% de. The diastereomeric excess given refers to the excess of 5S-configurated diastereomer. IR $\left(\mathrm{CHCl}_{3}\right)(v): 3053,2933,1589,1471$, 1428, 1239, 1113, $1019 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz) (δ): 7.717.62 (m, 4 H, Ar-H), 7.43-7.35 (m, $6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 4.33-4.19 (br. s, 1 H, OH), 3.95-3.83 (m, 2 H, H-9, H-5), 3.70-3.66 (dd, $1 \mathrm{H}, \mathrm{J} 11.2,4.9 \mathrm{~Hz}, \mathrm{H}-9), 3.63-3.57$ (m, $1 \mathrm{H}, \mathrm{H}-6$), 3.17-2.98 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-7, \mathrm{H}-2$), 2.85-2.80 (d, $1 \mathrm{H}, \mathrm{J} 14.3 \mathrm{~Hz}, \mathrm{H}-6$), 2.152.06 (m, 2 H, H-4, H-3), 1.87-1.78 (m, 1 H, H-8), 1.58-1.46 (m, $2 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-3$), 1.07/1.05 ($\left.\mathrm{s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz})(\delta): 135.68 / 134.89(\mathrm{CH}, \mathrm{Ar}-\mathrm{H}), 132.73$ (C, $\mathrm{Ar}-\mathrm{Si})$,
129.95 (CH, Ar-H), 127.87/127.58 (CH, Ar-H), 64.84/65.63 (CH, C-5), 64.79/64.35 (CH $2, \mathrm{C}-9), 57.68 / 56.35(\mathrm{CH}, \mathrm{C}-2), 53.24 /$ $52.22\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 49.17 / 48.68\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 28.34(\mathrm{CH}, \mathrm{C}-4), 26.87$ $\left(\mathrm{CH}_{3}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.86\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 19.20\left(\mathrm{C}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 17.23$ $\left(\mathrm{CH}_{2}, \mathrm{C}-3\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 395\left(\mathrm{M}^{+}, 2\right), 338(40), 199$ (100), 167 (11), 149 (23). HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{Si}$: 395.2280; found 395.2282.
(1S,2R,4S,5S)-2-(Triisopropylsilyloxymethyl)-1-aza-bicyclo[2.2.2]octan-5-ol (11c). 9c (103 mg, 0.330 mmol) was allowed to react according to the general procedure to afford anti-11c ($79 \%, 82 \mathrm{mg}, 0.26 \mathrm{mmol}$) with 71% de. IR $\left(\mathrm{CHCl}_{3}\right)$ (v): 2944, 1463, 1230, 1114, 1065, $1034 \mathrm{~cm}^{-1} .^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz})(\delta): 3.84-3.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.78-3.74 / 3.72-3.68(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J} 9.9,5.1 \mathrm{~Hz}, \mathrm{H}-9$), 3.67-3.63/3.61-3.57 (dd, $1 \mathrm{H}, \mathrm{J} 9.9$, $6.8 \mathrm{~Hz}, \mathrm{H}-9), 3.38-3.32$ (ddd, $1 \mathrm{H}, \mathrm{J} 14.6,8.1,1.5 \mathrm{~Hz}, \mathrm{H}-6$), 2.99-2.78 (m, 3 H, H-7, H-2), 2.51-2.45 (d, 1 H, J 14.6 Hz, H-6), 1.95-1.87 (m, $2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-3$), 1.84-1.77 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-8$), $1.43-1.34(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-3), 1.09-1.02(\mathrm{~m}, 21 \mathrm{H}, \mathrm{Si}-$ $\left.\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz})(\delta): 68.16(\mathrm{CH}, \mathrm{C}-5), 66.34 /$ $66.10\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 56.12 / 56.10(\mathrm{CH}, \mathrm{C}-2), 53.98 / 53.86\left(\mathrm{CH}_{2}, \mathrm{C}-6\right)$, $49.96\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 29.35(\mathrm{CH}, \mathrm{C}-4), 28.15\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 18.33\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-3), 18.05\left(\mathrm{CH}_{3}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right), 11.96\left(\mathrm{CH}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right)$. MS m/z: 313 (M+, 21), 295 (6), 271 (100), 139 (9). HRMS cal cd for $\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{NO}_{2} \mathrm{Si}$: 313.2437 ; found 313.2438 .
(1S,2R,4S,5S)-2-(Triphenylmethyloxymethyl)-1-aza-bicyclo[2.2.2]octan-5-ol (11d). 9 e ($110 \mathrm{mg}, 0.28 \mathrm{mmol}$) was allowed to react according to the general procedure to afford anti-11d ($91 \%, 101 \mathrm{mg}, 0.250 \mathrm{mmol})$ with 95% de. IR $\left(\mathrm{CHCl}_{3}\right)$ (v): 3062, 2932, 1599, 1449, 1230, 1153, 1089, $1034 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD}$) (δ): $7.45-7.42$ ($\mathrm{m}, 6 \mathrm{H}, \mathrm{Ar}-$ H), 7.32-7.28 (m, 6 H, Ar-H), 7.25-7.20 (m, 3H, Ar-H), $3.83-3.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.65-3.44(\mathrm{bm}, 1 \mathrm{H}, \mathrm{OH}), 3.41-3.39$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-9$) , 3.34-3.25 (m, $1 \mathrm{H}, \mathrm{H}-6$), 3.24-3.08 (m, 3 H , H-9, H-2, H-7), 3.05-2.96 (m, $1 \mathrm{H}, \mathrm{H}-7$), 2.82-2.78 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}$ $14.3 \mathrm{~Hz}, \mathrm{H}-6$), 2.11-1.99 (m, 2 H, H-4, H-3), 1.89-1.81 (m, 1 $\mathrm{H}, \mathrm{H}-8), 1.52-1.43(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.29-1.18$ (m, $1 \mathrm{H}, \mathrm{H}-8) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD}$) (δ): 143.47 ($\mathrm{C}, \mathrm{Ar}-\mathrm{C}$), 128.70 $(\mathrm{CH}, \mathrm{Ar}-\mathrm{H}), 127.96(\mathrm{CH}, \mathrm{Ar}-\mathrm{H}), 127.23(\mathrm{CH}, \mathrm{Ar}-\mathrm{H}), 87.46$ ($\mathrm{C}, \mathrm{Ph}_{3} \mathrm{CO}$), $65.59(\mathrm{CH}, \mathrm{C}-5), 63.96\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 55.35(\mathrm{CH}, \mathrm{C}-2)$, $52.59\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 49.24\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 28.09(\mathrm{CH}, \mathrm{C}-4), 26.78\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-8), 17.24\left(\mathrm{CH}_{2}, \mathrm{C}-3\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 399\left(\mathrm{M}^{+}, 4\right), 338(9), 271(5)$, 243 (100), 165 (31), 156 (91). HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{2}$: 399.2198; found 399.2197.
(1S,2R,4S,5R/S)-2-(Hydroxymethyl)-1-azabicyclo[2.2.2]-octan-5-ol (11e). 9d ($100 \mathrm{mg}, 0.65 \mathrm{mmol}$) was allowed to react according to the general procedure to afford 11e ($85 \%, 86 \mathrm{mg}$, $0.55 \mathrm{mmol})$ with 2% de. IR $\left(\mathrm{CHCl}_{3}\right)(v): 3358,2932,1460,1408$, 1232, 1148, 1040, $1018 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{CD}_{3}-$ OD) (δ): 4.15-3.98 (m, $2 \mathrm{H}, \mathrm{OH})$, 3.86-3.82 (m, $1 \mathrm{H}, \mathrm{H}-5$), $3.64-3.43$ (m, 2 H, H-9), 3.39-3.26 (m, 2 H, H-2, H-7), 3.213.09 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6$), 3.01-2.88 (m, $2 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-7$), 2.19-2.07 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-3$), 1.82-1.68 (m, $1 \mathrm{H}, \mathrm{H}-8$), 1.58-1.44 (m, 1 $\mathrm{H}, \mathrm{H}-8), 1.29-1.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right)(\delta): 65.41(\mathrm{CH}, \mathrm{C}-5), 62.87\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 53.82(\mathrm{CH}, \mathrm{C}-2)$, $52.10\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 49.78\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 27.83(\mathrm{CH}, \mathrm{C}-4), 26.05\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-8), 17.59\left(\mathrm{CH}_{2}, \mathrm{C}-3\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 157\left(\mathrm{M}^{+}, 8\right), 129(100), 110$ (16). HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{2}$: 157.1104; found 157.1102. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{2}$: C 61.12, H 9.62, N 8.91; found C 60.73, H 9.86, N 8.72 .
(1S,2S,4S,5S)-2-(tert-Butyldimethylsilyloxymethyl)-1-azabicyclo[2.2.2]octan-5-ol (12a). 10a ($143 \mathrm{mg}, 0.530 \mathrm{mmol}$) was allowed to react according to the general procedure to afford anti-12a ($84 \%, 121 \mathrm{mg}, 0.450 \mathrm{mmol}$) with 48% de. IR $\left(\mathrm{CHCl}_{3}\right)(v): 2952,2928,1472,1256,1116,1032 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})(\delta): 4.10-3.98(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 3.85-3.82(\mathrm{~m}, 1 \mathrm{H}$, H-5), 3.69-3.62 (m, 2 H, H-9), 3.23-3.19/3.19-3.10 (dd, 1 H, J $14.2,8.0 \mathrm{~Hz}, \mathrm{H}-6$), 3.08-2.97 (m, $2 \mathrm{H}, \mathrm{H}-7, \mathrm{H}-2$), 2.74-2.69/ 2.63-2.58 (m, $1 \mathrm{H}, \mathrm{H}-6), 2.52-2.45(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 2.03-1.95 /$ 1.84-1.81 (m, 1 H, H-3), 1.93-1.88 (m, 1 H, H-4), 1.63-1.54 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-8$), 1.39-1.28 (m, $1 \mathrm{H}, \mathrm{H}-8$), 1.24-1.17 (m, 1 H , $\mathrm{H}-3), 0.89-0.86\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.06-0.04(\mathrm{~m}, 6 \mathrm{H}$, $\left.\mathrm{SiCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz) (δ): $67.04 / 66.99(\mathrm{CH}, \mathrm{C}-5), 65.44$ $\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 60.55 / 59.86\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 56.84 / 56.64(\mathrm{CH}, \mathrm{C}-2)$, $42.47 / 41.40\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 29.69 / 28.86(\mathrm{CH}, \mathrm{C}-4), 25.96\left(\mathrm{CH}_{3}, \mathrm{SiC}-\right.$ $\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 27.75 / 24.26\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 22.31 / 18.85\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 18.35$
$\left(\mathrm{C}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right),-5.37\left(\mathrm{CH}_{3}, \mathrm{SiCH}_{3}\right) . \mathrm{MS}$ m/z: $271\left(\mathrm{M}^{+}, 7\right), 256$ (8), 214 (100). HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{Si}: 271.1967$; found 271.1969.
(1S,2S,4S,5S)-2-(tert-Butyldiphenylsilyloxymethyl)-1-azabicyclo[2.2.2]octan-5-ol (12b). 10b ($770 \mathrm{mg}, 1.96 \mathrm{mmol}$) was allowed to react according to the general procedure to afford anti-12b ($80 \%, 619 \mathrm{mg}, 1.57 \mathrm{mmol}$) with 55% de. IR $\left(\mathrm{CHCl}_{3}\right)(v): 3317,3073,2961,1589,1471,1428,1240,1113$, $1013 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})(\delta): 7.68-7.62(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-$ H), 7.44-7.35 (m, 6 H, Ar-H), 4.27-4.18 (m, $2 \mathrm{H}, \mathrm{H}-9, \mathrm{H}-5$), 3.73-3.64 (m, 2 H, H-9, H-7), 3.61-3.52 (m, $2 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-2$), 3.32-3.10 (m, 2 H, H-6, H-7), 2.28-2.17 (m, 2 H, H-4, H-3), $1.88-1.65(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-3), 1.07\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz})(\delta): 135.65(\mathrm{CH}, \mathrm{Ar}-\mathrm{H}), 132.08 / 131.93(\mathrm{C}, \mathrm{Ar}-\mathrm{Si})$, 130.24/130.14 (CH, Ar-H), 128.06 (CH, Ar-H), 63.54/63.33 ($\mathrm{CH}, \mathrm{C}-5$), $62.87\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 59.21 / 58.60\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 58.21 / 57.62$ (CH, C-2), 42.98/42.24 ($\mathrm{CH}_{2}, \mathrm{C}-7$), 27.69/27.24 (CH, C-4), 26.89 $\left(\mathrm{CH}_{3}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 23.26 / 20.92\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 19.21 / 17.19\left(\mathrm{CH}_{2}\right.$, C-3), 19.18 (C, SiC(CH $)_{3}$). MS m/z: 395 (${ }^{+}, 2$), 364 (3), 338 (100), 199 (17). HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{Si}$: 395.2280 ; found 395.2281.

General procedure for the reaction of C5-ketones $9 \mathbf{9}-\mathbf{e}$ and 10a with organolithium or Grignard reagents. A 1.0 M solution of the Grignard reagent (3 equiv) or the organolithium reagent (3 equiv) in abs. THF was added dropwise within 5 min to a solution of the C5-ketone (1 equiv) in abs THF at $-90^{\circ} \mathrm{C}$. After stirring for 2 h at $-78^{\circ} \mathrm{C}$ the reaction mixture was warmed to $0{ }^{\circ} \mathrm{C}$ within 2 h and stirred for 1 h at $0^{\circ} \mathrm{C}$. The reaction mixture was extracted (saturated aqueous NaHCO_{3} and $\left.\mathrm{CHCl}_{3}\right)$. The combined organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent was removed in vacuo. The resulting crude product was purified by column chromatography (EA/ $\mathrm{MeOH} 10: 1$) to yield the corresponding quinuclidin-5-ols $\mathbf{1 1 f}-\mathbf{n}$ and $\mathbf{1 2 c} \mathbf{c}$.
(1S,2R,4S,5S)-2-(tert-Butyldimethylsilyloxymethyl)-5-(14-hydroxy-pent-10-ynyl)-1-azabicyclo[2.2.2]octan-5-ol (11f). 9a ($100 \mathrm{mg}, 0.37 \mathrm{mmol}$) was allowed to react with bislithiated pent-4-yn-1ol ($0.10 \mathrm{~mL}, 1.1 \mathrm{mmol}$) according to the general procedure to afford anti-11f ($69 \%, 91 \mathrm{mg}, 0.26 \mathrm{mmol}$) with 65% de. IR $\left(\mathrm{CHCl}_{3}\right)(v): 3304,2956,2932,1468,1256$, $1120,1020 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz) (δ): $3.94-3.90$ (dd, 1 H , J $10.5,3.8 \mathrm{~Hz}, \mathrm{H}-9$), $3.79-3.75$ (dd, $1 \mathrm{H}, \mathrm{J} 10.6,5.1 \mathrm{~Hz}, \mathrm{H}-9$), 3.77-3.68 (m, 2 H, H-14, H-14), 3.33-3.29/3.15-3.01 (m, 1 H, H-6), 2.89-2.79 (m, 2 H, H-7, H-2), 2.76-2.70 (m, 1 H, H-7), 2.64-2.60 (d, 1 H, J $14.7 \mathrm{~Hz}, \mathrm{H}-6$), 2.35-2.31 (m, $1 \mathrm{H}, \mathrm{H}-4$), 2.09-2.04 (m, 1 H, H-3), 1.87-1.84 (m, 1 H, H-8), 1.80-1.61 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-3$), 1.59-1.43 (m, $2 \mathrm{H}, \mathrm{H}-12, \mathrm{H}-12$), 1.39-1.29 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-13, \mathrm{H}-13$), $0.94-0.89\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.13-$ $0.10 / 0.09-0.06\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{SiCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz) (δ): 83.21 (C, C-10), 70.58 (C, C-5), 67.97 (C, C-11), 66.68/65.54 (CH_{2}, $\mathrm{C}-9), 59.73 / 58.89\left(\mathrm{CH}_{2}, \mathrm{C}-14\right), 56.28 / 56.01$ (CH, C-2), 49.41/ $48.62\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 39.91\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 32.65(\mathrm{CH}, \mathrm{C}-4), 26.05 / 25.99$ $\left(\mathrm{CH}_{3}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.04\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 23.29\left(\mathrm{CH}_{2}, \mathrm{C}-12\right), 23.02$ $\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 18.54 / 18.43\left(\mathrm{C}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 14.13\left(\mathrm{CH}_{2}, \mathrm{C}-13\right),-5.37$ $\left(\mathrm{CH}_{3}, \mathrm{SiCH}_{3}\right),-5.42\left(\mathrm{CH}_{3}, \mathrm{SiCH}_{3}\right)$. MS m/z: $327\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{2}\right.$, 4), 312 (3), 270 (28), 182 (100); FAB-MS 353 ($\mathrm{M}^{+}, 18$), 327 ($\mathrm{M}^{+}-$ $\mathrm{C}_{2} \mathrm{H}_{2}, 100$). HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{NO}_{3} \mathrm{Si}$: 353.8404 ; found 353.8411.
(1S,2S,4S,5S)-2-(tert-Butyldimethylsilyloxymethyl)-5-(14-hydroxy-pent-10-ynyl)-1-azabicyclo[2.2.2]octan-5-ol (12c). 10a ($100 \mathrm{mg}, 0.37 \mathrm{mmol}$) was allowed to react with bislithiated pent-4-yn-1ol ($0.10 \mathrm{~mL}, 1.1 \mathrm{mmol}$) according to the general procedure to afford anti-12c ($66 \%, 87 \mathrm{mg}, 0.25 \mathrm{mmol}$) with 33% de. IR $\left(\mathrm{CHCl}_{3}\right)(v): 3304,2956,2928,1468,1256$, $1116,1056,1032 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz) (δ): $3.78-3.58$ (m, 4 H, H-9, H-14, H-14), 3.10-2.94 (m, 2 H, H-6, H-7), 2.892.72 (m, 3 H, H-7, H-2, H-6), 2.56-2.48 (m, 1 H, H-4), 2.34-2.25/2.11-2.02 (m, $1 \mathrm{H}, \mathrm{H}-3$), 1.85-1.72 (m, $1 \mathrm{H}, \mathrm{H}-8$), 1.641.46 (m, 2 H, H-8, H-3), 1.40-1.17 (m, 4 H, H-12, H-12, H-13, $\mathrm{H}-13$), $0.91-0.88\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.08-0.05(\mathrm{~m}, 6 \mathrm{H}$, SiCH_{3}). ${ }^{13} \mathrm{C}$ NMR (100 MHz) (δ): 83.92 (C, C-10), 71.63/71.45 (C, C-5), 67.95 (C, C-11), 66.16/66.12 ($\left.\mathrm{CH}_{2}, \mathrm{C}-9\right), 65.81 / 65.64$ $\left(\mathrm{CH}_{2}, \mathrm{C}-14\right), 56.59(\mathrm{CH}, \mathrm{C}-2), 42.09 / 41.71\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 40.64 /$ $39.93\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 32.28 / 32.19(\mathrm{CH}, \mathrm{C}-4), 27.12\left(\mathrm{CH}_{2}, \mathrm{C}-12\right)$, $25.98\left(\mathrm{CH}_{3}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.13 / 23.74\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 23.24 / 21.49$
$\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 18.39\left(\mathrm{C}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 14.10\left(\mathrm{CH}_{2}, \mathrm{C}-13\right),-5.34\left(\mathrm{CH}_{3}\right.$, $\left.\mathrm{SiCH}_{3}\right),-5.36\left(\mathrm{CH}_{3}, \mathrm{SiCH}_{3}\right)$. MS m/z: $327\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{2}, 7\right), 312$ (7), 182 (100); FAB-MS 353 ($\mathrm{M}^{+}, 20$), 327 ($\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{2}, 100$). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{NO}_{3} \mathrm{Si}$: C 64.49, H 9.97, N 3.96 ; found C 64.03, H 9.88, N 4.18.
(1S,2R,4S,5S)-2-(tert-Butyldimethylsilyloxymethyl)-5-phenyl-1-azabicyclo[2.2.2]octan-5-ol (11g). 9a ($64 \mathrm{mg}, 0.24$ mmol) was allowed to react with phenylmagnesium bromide ($0.71 \mathrm{~mL}, 0.71 \mathrm{mmol}$) according to the general procedure to afford anti-11g ($77 \%, 64 \mathrm{mg}, 0.18 \mathrm{mmol}$) with 46% de. IR $\left(\mathrm{CHCl}_{3}\right)(v): 2956,2928,1599,1464,1256,1120,1080,1020$ $\mathrm{cm}^{-1}{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})(\delta): 7.54-7.51 / 7.48-7.46(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{Ar}-\mathrm{H}), 7.39-7.35 / 7.31-7.26(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.06-4.02$ (dd, $1 \mathrm{H}, \mathrm{J} 10.6,3.7 \mathrm{~Hz}, \mathrm{H}-9$), $3.88-3.84$ (dd, $1 \mathrm{H}, \mathrm{J} 10.5,5.2 \mathrm{~Hz}$, H-9), 3.74-3.67/3.66-3.59 (m, 1 H, H-2), 3.55-3.49/3.16-3.12 (d, $1 \mathrm{H}, \mathrm{J} 15.2, \mathrm{H}-6$), 3.45-3.41/3.09-3.03 (d, $1 \mathrm{H}, \mathrm{J} 15.1 \mathrm{~Hz}$, H-6), 2.94-2.85 (m, $1 \mathrm{H}, \mathrm{H}-7$), 2.84-2.79 (m, $1 \mathrm{H}, \mathrm{H}-7$), 2.492.45 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4$), $2.35-2.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 2.19-2.15 / 1.88-$ 1.84 (m, 1 H, H-8), 1.75-1.66/1.64-1.57 (m, 1 H, H-8), 1.53-1.46/1.45-1.39 (m, $1 \mathrm{H}, \mathrm{H}-3), 0.96 / 0.79\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $0.17 /-0.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.16 /-0.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right) .{ }^{13} \mathrm{C}^{2} \mathrm{NMR}$ $(100 \mathrm{MHz})(\delta): 145.44 / 145.37(\mathrm{C}, \mathrm{Ph}), 128.56 / 128.23(\mathrm{CH}, \mathrm{Ph})$, 127.52/127.11 (CH, Ph), 125.96/125.94 (CH, Ph), 72.67/72.16 (C, C-5), 67.95/66.61 ($\left.\mathrm{CH}_{2}, \mathrm{C}-9\right), 58.81 / 57.82\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 56.41 /$ 56.22 (CH, C-2), 49.74/48.91 ($\left.\mathrm{CH}_{2}, \mathrm{C}-7\right), 34.98 / 32.34(\mathrm{CH}, \mathrm{C}-4)$, 26.08/25.86 ($\left.\mathrm{CH}_{3}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.03 / 22.82\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 22.41 /$ $20.75\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 18.59 / 18.30\left(\mathrm{C}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right),-5.37\left(\mathrm{CH}_{3}\right.$, $\left.\mathrm{SiCH}_{3}\right),-5.52\left(\mathrm{CH}_{3}, \mathrm{SiCH}_{3}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 347\left(\mathrm{M}^{+}, 2\right), 332(3), 290$ (10), 202 (100), 184 (23). HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{Si}$: 347.2280; found 347.2281.
(1S,2S,4S,5S)-2-(tert-Butyldimethylsilyloxymethyl)-5-phenyl-1-azabicyclo[2.2.2]octan-5-ol (12d). 10a (116 mg, 0.43 mmol) was allowed to react with phenylmagnesium bromide ($1.29 \mathrm{~mL}, 1.29 \mathrm{mmol}$) according to the general procedure to afford anti-12d ($73 \%, 109 \mathrm{mg}, 0.310 \mathrm{mmol}$) with 22% de. IR $\left(\mathrm{CHCl}_{3}\right)(\nu): 3060,2956,2928,1600,1472,1256$, 1116, $1028 \mathrm{~cm}^{-1} .^{1} \mathrm{H}$ NMR (400 MHz) (δ): $7.49-7.44(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{Ar}-\mathrm{H}), 7.38-7.34(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.29-7.26$ (m, $1 \mathrm{H}, \mathrm{Ar}-$ H), $3.71-3.69$ (d, $1 \mathrm{H}, \mathrm{J} 5.8 \mathrm{~Hz}, \mathrm{H}-9$), 3.68-3.65 (dd, $1 \mathrm{H}, \mathrm{J}$ $6.1,3.9 \mathrm{~Hz}, \mathrm{H}-9$), 3.56-3.52/3.39-3.35 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J} 14.3, \mathrm{H}-6$), 3.23-3.14/3.08-3.00 (m, 1 H, H-2), 3.13-3.08/3.06-3.02 (d, 1 $\mathrm{H}, \mathrm{J} 14.1 \mathrm{~Hz}, \mathrm{H}-6$), $2.89-2.71(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7), 2.53-2.46$ ($\mathrm{m}, 1$ $\mathrm{H}, \mathrm{H}-4), 2.29-2.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 2.19-2.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8)$, 1.48-1.39 (m, 1 H, H-8), 1.38-1.29 (m, 1 H, H-3), 0.92/0.89 (s, $\left.9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.06 / 0.05(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{SiCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz) (δ): $146.06 / 145.95(\mathrm{C}, \mathrm{Ph}), 128.36$ (CH, Ph), 127.27 (CH , Ph), 126.03/125.98 (CH, Ph), 72.71/72.41 (C, C-5), 65.59/65.32 ($\left.\mathrm{CH}_{2}, \mathrm{C}-9\right), 64.74 / 64.64\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 56.55 /$ 56.49 (CH, C-2), 42.14/41.52 ($\left.\mathrm{CH}_{2}, \mathrm{C}-7\right)$, $34.05 / 33.37(\mathrm{CH}, \mathrm{C}-4)$, 26.06/24.92 $\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 25.99 / 25.57\left(\mathrm{CH}_{3}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 23.04 /$ $21.29\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 18.35\left(\mathrm{C}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right),-5.34\left(\mathrm{CH}_{3}, \mathrm{SiCH}_{3}\right)$, $-5.37\left(\mathrm{CH}_{3}, \mathrm{SiCH}_{3}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 347\left(\mathrm{M}^{+}, 4\right), 332$ (4), 290 (14), 202 (100), 184 (7). HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{Si}: 347.2280$; found 347.2284 .
(1S,2R,4S,5S)-2-(tert-Butyldimethylsilyloxymethyl)-5-(13-methylfuranyl)-1-azabicyclo[2.2.2]-octan-5-ol (11h). $9 \mathrm{a}(100 \mathrm{mg}, 0.37 \mathrm{mmol})$ was allowed to react with 2-methylfuranyll ithium ($0.60 \mathrm{mmol}, 1.6$ equiv) according to the general procedure to afford anti-11h ($76 \%, 99 \mathrm{mg}, 0.28 \mathrm{mmol}$) with 42% de. IR $\left(\mathrm{CHCl}_{3}\right)(v): 2956,2928,1472,1388,1264,1112$, $1024 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz) (δ): $6.18-6.17 / 6.12-6.11$ (d, $1 \mathrm{H}, \mathrm{J} 3.0 \mathrm{~Hz}, \mathrm{H}-11$), $5.93-5.90$ (m, $1 \mathrm{H}, \mathrm{H}-12$), 3.82-3.76 (m, $1 \mathrm{H}, \mathrm{H}-9$), 3.70-3.64 (m, $1 \mathrm{H}, \mathrm{H}-9$), 3.51-3.48/3.42-3.39 (d, 1 H, J $13.5 \mathrm{~Hz}, \mathrm{H}-6$), 3.23-3.14/3.27-3.19 (m, $1 \mathrm{H}, \mathrm{H}-2$), 3.18-3.14/3.11-3.08 (d, 1 H, J $13.6 \mathrm{~Hz}, \mathrm{H}-6$), 2.95-2.83 (m, 2 H , $\mathrm{H}-7$), 2.69-2.63 (m, $1 \mathrm{H}, \mathrm{H}-4), 2.33-2.25$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3$), 2.292.26 (m, 3H, H-14), 1.87-1.73 (m, 1 H, H-8), 1.56-1.38 (m, 2 $\mathrm{H}, \mathrm{H}-8, \mathrm{H}-3), 0.93 / 0.90\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.09 / 0.08$ (s, 3 H , $\left.\mathrm{SiCH}_{3}\right), 0.05 / 0.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz})(\delta)$: 155.64/155.03 (C, C-13), 151.87/151.53 (C, C-10), 106.96/106.51 (CH, C-12), 106.11/106.02 (CH, C-11), 69.72/69.25 (C, C-5), $64.87 / 64.36\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 62.44 / 61.89\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 57.01 / 56.47$ (CH, C-2), 47.99/47.32 ($\left.\mathrm{CH}_{2}, \mathrm{C}-7\right), 33.09 / 32.65$ (CH, C-4), 25.70/ $23.28\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 25.84\left(\mathrm{CH}_{3}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 22.81 / 20.54\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-3), 18.32\left(\mathrm{C}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 13.63\left(\mathrm{CH}_{3}, \mathrm{C}-14\right),-5.35\left(\mathrm{CH}_{3}\right.$,
$\left.\mathrm{SiCH}_{3}\right),-5.42\left(\mathrm{CH}_{3}, \mathrm{SiCH}_{3}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 351\left(\mathrm{M}^{+}, 4\right), 335\left(\mathrm{M}^{+}-\right.$ O, 4), 294 (8), 276 (3), 206 (100). HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{NO}_{2}-$ Si: 335.2281; found 335.2249. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{Si}$: C 64.97, H 9.47, N 3.99; found C 65.28 , H 9.60, N 3.83.
(1S,2R,4S,5S)-2-(Hydroxymethyl)-5-(13-methylfuranyl)-1-azabicyclo[2.2.2]octan-5-ol (11i). 9 ($200 \mathrm{mg}, 0.51 \mathrm{mmol}$) was allowed to react with 2-methylfuranyllithium (0.76 mmol , 1.5 equiv) according to the general procedure to afford anti11i ($65 \%, 78 \mathrm{mg}, 0.33 \mathrm{mmol}$) with 16% de. IR $\left(\mathrm{CHCl}_{3}\right)(\nu)$: 2974, 1559, 1413, 1371, 1231, 1145, $1025 \mathrm{~cm}^{-1} .^{1} \mathrm{H} \operatorname{NMR}(400$ MHz) (δ): $6.16-6.14 / 6.11-6.09$ (d, $1 \mathrm{H}, \mathrm{J} 3.1 \mathrm{~Hz}, \mathrm{H}-11$), $5.90-$ 5.87 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-12$), 3.79-3.73 (m, $1 \mathrm{H}, \mathrm{H}-9), 3.52-3.46$ (m, 1 H, H-9), 3.43-3.39/3.34-3.16 (m, 1 H, H-6), 3.12-3.07 (m, 1 $\mathrm{H}, \mathrm{H}-2), 2.99-2.89(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 2.86-2.81(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J} 14.9$ $\mathrm{Hz}, \mathrm{H}-6), 2.78-2.72$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-7$), 2.30-2.20 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4$), 2.25-2.24/2.23-2.22 (d, $3 \mathrm{H}, \mathrm{J} 3.1 \mathrm{~Hz}, \mathrm{H}-14$), 1.82-1.75 (m, 1 $\mathrm{H}, \mathrm{H}-3$), 1.63-1.47 (m, $2 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-3$), 0.98-0.87 (m, $1 \mathrm{H}, \mathrm{H}-8$). ${ }^{13} \mathrm{C}$ NMR (100 MHz) (δ): $155.80 / 155.14$ (C, C-13), 151.99/ 151.97 (C, C-10), 106.98/106.83 (CH, C-12), 106.16/106.08 (CH, C-11), 69.69/69.05 (C, C-5), 62.16/62.01 ($\left.\mathrm{CH}_{2}, \mathrm{C}-9\right), ~ 61.97 / 61.82$ $\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 57.68 / 57.23(\mathrm{CH}, \mathrm{C}-2), 48.24 / 47.83\left(\mathrm{CH}_{2}, \mathrm{C}-7\right)$, 32.93/32.09 (CH, C-4), 25.51/22.50 ($\left.\mathrm{CH}_{2}, \mathrm{C}-8\right), 22.38 / 19.96$ $\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 13.61 / 13.58\left(\mathrm{CH}_{3}, \mathrm{C}-14\right)$. MS m/z: $237\left(\mathrm{M}^{+}, 1\right)$, 226 (4), 206 (100), 199 (14), 137 (16); FAB-MS 238 (${ }^{+}+1,100$), 206 (52). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{3}$: C 65.80, H 8.07, N 5.90; found C 66.07, H 8.02, N 5.68 .
(1S,2S,4S,5S)-2-(tert-Butyldimethylsilyloxymethyl)-5-(13-methylfuranyl)-1-azabicyclo[2.2.2]-octan-5-ol (12e). 10a ($100 \mathrm{mg}, 0.37 \mathrm{mmol}$) was allowed to react with 2 -methylfuranyllithium ($0.60 \mathrm{mmol}, 1.6$ equiv) according to the general procedure to afford anti-12e ($72 \%, 94 \mathrm{mg}, 0.27 \mathrm{mmol}$) with 18% de. IR $\left(\mathrm{CHCl}_{3}\right)(v)$: 2956, 2928, 1472, 1264, 1112, $1028 \mathrm{~cm}^{-1} .^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})(\delta): 6.20-6.19 / 6.17-6.16(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J} 3.1 \mathrm{~Hz}, \mathrm{H}-11$), $5.92-5.89$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-12$), $3.85-3.79$ (m, $1 \mathrm{H}, \mathrm{H}-9), 3.74-3.68$ (m, $1 \mathrm{H}, \mathrm{H}-9$), 3.56-3.53/3.47-3.43 (d, 1 H, J $14.0 \mathrm{~Hz}, \mathrm{H}-6), 3.28-3.19$ (m, $1 \mathrm{H}, \mathrm{H}-7$), 3.21-3.17/3.143.10 (d, $1 \mathrm{H}, \mathrm{J} 14.2 \mathrm{~Hz}, \mathrm{H}-6$), 3.01-2.89 (m, $2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-7$), 2.68-2.64 (m, 1 H, H-4), 2.34-2.24 (m, 1 H, H-3), 2.28 (s, 3 $\mathrm{H}, \mathrm{H}-14$), 1.81-1.72 (m, $1 \mathrm{H}, \mathrm{H}-8$), 1.52-1.41 (m, $2 \mathrm{H}, \mathrm{H}-8$, $\mathrm{H}-3), 0.91 / 0.89\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.09 / 0.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right)$, $0.07 / 0.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz) (δ): $155.73 /$ 155.25 (C, C-13), 152.11 (C, C-10), 106.94/106.90 (CH, C-12), 106.17/106.14 (CH, C-11), 69.88/69.59 (C, C-5), 64.79/64.68 $\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 62.51 / 62.46\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 56.84 / 56.49(\mathrm{CH}, \mathrm{C}-2)$, $42.31 / 41.70\left(\mathrm{CH}_{2}, \mathrm{C}-7\right)$, $33.17 / 32.74(\mathrm{CH}, \mathrm{C}-4), 25.95\left(\mathrm{CH}_{3}, \mathrm{SiC}-\right.$ $\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 25.72 / 23.36\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 22.71 / 20.17\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 18.34$ $\left(\mathrm{C}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 13.62\left(\mathrm{CH}_{3}, \mathrm{C}-14\right),-5.37\left(\mathrm{CH}_{3}, \mathrm{SiCH}_{3}\right),-5.41$ $\left(\mathrm{CH}_{3}, \mathrm{SiCH}_{3}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 351\left(\mathrm{M}^{+}, 2\right), 336$ (4), 294 (11), 206 (100). HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{Si}$: 335.2281; found 335.2185. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{Si}$: C 64.97, H 9.47, N 3.99; found C 65.34, H 9.58, N 3.79.
(1S,2R,4S,5S)-2-(tert-Butyldimethylsilyloxymethyl)-5-vinyl-1-azabicyclo[2.2.2]octan-5-ol (11j). 9a (190 mg, 0.71 mmol) was allowed to react with vinylmagnesium bromide ($2.12 \mathrm{~mL}, 2.12 \mathrm{mmol}$) according to the general procedure to afford anti-11j ($84 \%, 176 \mathrm{mg}, 0.590 \mathrm{mmol}$) with $16 \% \mathrm{de}$ IR $\left(\mathrm{CHCl}_{3}\right)(v): 2954,2930,1471,1257,1120,1079,1020 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})(\delta): 6.15-6.08 / 6.04-5.96$ (dd, 1 H , J 17.3, $10.8 \mathrm{~Hz}, \mathrm{H}-10), 5.30-5.23$ (ddd, $1 \mathrm{H}, \mathrm{J} 17.3,9.3,1.5 \mathrm{~Hz}, \mathrm{H}-11$), 5.12-5.09 (d, 1 H, J $10.8 \mathrm{~Hz}, \mathrm{H}-11$), 3.91-3.87 (dd, $1 \mathrm{H}, \mathrm{J}$ 10.4, 4.4 Hz, H-9), 3.79-3.74 (dd, $1 \mathrm{H}, \mathrm{J} 10.3,5.3 \mathrm{~Hz}, \mathrm{H}-9$), 3.67-3.66 (d, 1 H, J $5.6 \mathrm{~Hz}, \mathrm{H}-2$), 3.22-3.18/3.10-3.05 (dd, 1 H, J $14.8,1.5 \mathrm{~Hz}, \mathrm{H}-6), 2.99-2.78$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-7$), 2.88-2.84/ 2.66-2.62 (d, $1 \mathrm{H}, \mathrm{J} 14.5 \mathrm{~Hz}, \mathrm{H}-6), 2.10-2.04(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4)$, 1.86-1.82/1.79-1.75 (m, 1 H, H-3), 1.71-1.61 (m, 1 H, H-8), 1.58-1.47 (m, $1 \mathrm{H}, \mathrm{H}-8$), $1.44-1.37(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 0.91 / 0.86$ (s, $\left.9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.09 / 0.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.04(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{SiCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz) (δ): $142.91 / 142.79(\mathrm{CH}, \mathrm{C}-10)$, $113.07 / 112.85\left(\mathrm{CH}_{2}, \mathrm{C}-11\right)$, $71.64 / 71.03$ (C, C-5), $66.42 / 65.25$ $\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 57.39 / 57.04\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 56.29 / 56.07(\mathrm{CH}, \mathrm{C}-2)$, 49.36/49.01 ($\left.\mathrm{CH}_{2}, \mathrm{C}-7\right)$, 34.22/33.43 ($\left.\mathrm{CH}, \mathrm{C}-4\right), 26.05\left(\mathrm{CH}_{3}, \mathrm{SiC}-\right.$ $\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 25.97 / 22.85\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 22.62 / 20.51\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 18.51 /$ $18.38\left(\mathrm{C}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right),-5.35\left(\mathrm{CH}_{3}, \mathrm{SiCH}_{3}\right),-5.38\left(\mathrm{CH}_{3}, \mathrm{SiCH}_{3}\right)$. MS m/z: 298 ($\mathrm{M}^{+}+1,12$), 240 (30), 184 (5), 152 (100). HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{NO}_{2} \mathrm{Si}$: 297.2124; found 297.2124.
(1S,2R,4S,5S)-2-(Hydroxymethyl)-5-(10-phenylethynyl)-1-azabicyclo[2.2.2]octan-5-ol (11k). 9b ($100 \mathrm{mg}, 0.25 \mathrm{mmol}$) was allowed to react with lithiated phenyl acetylene (1.12 $\mathrm{mmol}, 3$ equiv) according to the general procedure to afford anti-11k $(67 \%, 44 \mathrm{mg}, 0.17 \mathrm{mmol})$ with 3% de. IR $\left(\mathrm{CHCl}_{3}\right)(v)$: 3421, 2999, 2971, 1599, 1443, 1412, 1236, 1143, $1024 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz) (δ): 7.41-7.39 (m, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.337.26 (m, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 4.30-4.18 (bs, $1 \mathrm{H}, \mathrm{OH}$), 3.76-3.70/3.643.58 (m, 1 H, H-9), 3.53-3.46 (m, 2 H, H-9, H-7), 3.32-3.28/ 3.02-2.98 (d, 1 H, J 14.4 Hz, H-6), 3.23-3.19/2.94-2.89 (d, 1 H, J $13.8 \mathrm{~Hz}, \mathrm{H}-6$), 3.10-2.85 (m, $2 \mathrm{H}, \mathrm{H}-7, \mathrm{H}-2$), 2.18-2.09 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-3$), 1.81-1.64 (m, $2 \mathrm{H}, \mathrm{H}-8$), 1.55-1.43 (m, 1 $\mathrm{H}, \mathrm{H}-3) .{ }^{13} \mathrm{C}$ NMR (100 MHz) (δ): $131.65(\mathrm{CH}, \mathrm{Ph}), 128.52 /$ 128.35 (CH, Ph), 122.46/ 122.34 (C, Ph), 92.65/92.26 (C, C-10), 84.15/84.08 (C, C-11), 67.19/66.73 (C, C-5), 62.05/ $61.99\left(\mathrm{CH}_{2}\right.$, C-9), $57.65 / 57.56\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 57.04 / 56.99(\mathrm{CH}, \mathrm{C}-2), 48.09 / 47.88$ $\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 34.53\left(34.33(\mathrm{CH}, \mathrm{C}-4), 26.01 / 22.98\left(\mathrm{CH}_{2}, \mathrm{C}-8\right)\right.$, 21.52/19.05 ($\left.\mathrm{CH}_{2}, \mathrm{C}-3\right)$. FAB-MS m/z: $258\left(\mathrm{M}^{+}+1,100\right), 240$ (8), 226 (18). HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}$: 257.3316; found 257.3304. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}$: C $74.68, \mathrm{H} 7.44, \mathrm{~N} 5.44$; found C 74.55, H 7.31, N 5.79 .
(1S,2R,4S,5S)-2-(tert-Butyldimethylsilyloxymethyl)-5-(10-phenylethynyl)-1-azabicyclo[2.2.2]-octan-5-ol (111). 9a ($86 \mathrm{mg}, 0.32 \mathrm{mmol}$) was allowed to react with lithiated phenyl acetylene ($0.96 \mathrm{mmol}, 3$ equiv) according to the general procedure to afford anti-111 ($71 \%, 84 \mathrm{mg}, 0.23 \mathrm{mmol}$) with 39% de. IR $\left(\mathrm{CHCl}_{3}\right)(v)$: 3000, 2972, 1464, 1324, 1236, 1144, 1068, $1024 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz) (δ): 7.42-7.38(m, $2 \mathrm{H}, \mathrm{Ar}-$ H), 7.32-7.27 (m, 3 H, Ar-H), 3.70-3.64/3.60-3.54 (dd, 1 H, J $11.6,10.0 \mathrm{~Hz}, \mathrm{H}-9), 3.49-3.39$ (m, $2 \mathrm{H}, \mathrm{H}-9, \mathrm{H}-6$), 3.052.82 (m, $4 \mathrm{H}, \mathrm{H}-7, \mathrm{H}-2, \mathrm{H}-7, \mathrm{H}-6$), 2.15-2.11 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4$), 2.09-2.03 (m, $1 \mathrm{H}, \mathrm{H}-3), 1.79-1.71 / 1.68-1.59(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8)$, 1.53-1.37 (m, 2 H, H-8, H-3), $1.26\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.04-$ $0.03\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{SiCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz) (δ): $131.65(\mathrm{CH}$, Ph), 128.45/128.25 (CH, Ph), 122.73/122.47 (C, Ph), 93.03/92.67 (C, C-10), 84.06/84.00 (C, C-11), 67.69/67.24 (С, C-5), 62.31/ $62.23\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 57.91 / 57.86\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 56.52 / 56.46(\mathrm{CH}, \mathrm{C}-2)$, $48.31 / 48.10\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 34.82 / 34.51(\mathrm{CH}, \mathrm{C}-4), 31.22\left(\mathrm{CH}_{3}, \mathrm{SiC}-\right.$ $\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 26.39 / 23.53\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 21.72 / 19.38\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 18.39$ (C, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right),-5.36\left(\mathrm{CH}_{3}, \mathrm{SiCH}_{3}\right),-5.44\left(\mathrm{CH}_{3}, \mathrm{SiCH}_{3}\right)$. MS m/z: 371 (${ }^{+}$, 4), 343 (3), 314 (11), 226 (100), 198 (37). FABMS 371 ($\mathrm{M}^{+}, 100$): 313 (18), 257 (82). HRMS cal cd for $\mathrm{C}_{22} \mathrm{H}_{33^{-}}$ $\mathrm{NO}_{2} \mathrm{Si}$: 371.2281; found 371.2271.
(1S,2R,4S,5S)-2-(Triisopropylsilyloxymethyl)-5-(10-phenylethynyl)-1-azabicyclo[2.2.2]octan-5-ol (11m). 9c ($115 \mathrm{mg}, 0.37 \mathrm{mmol}$) was allowed to react with lithiated phenyl acetylene ($1.11 \mathrm{mmol}, 3$ equiv) according to the general procedure to afford anti-11m ($65 \%, 99 \mathrm{mg}, 0.24 \mathrm{mmol}$) with 69% de. IR $\left(\mathrm{CHCl}_{3}\right)(v): 2944,1490,1463,1261,1120,1068$, $1022 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz) (δ): $7.43-7.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-$ H), 7.32-7.29 (m, 3 H, Ar-H), 3.89-3.85/3.84-3.80 (dd, 1 H, J 9.5, $5.1 \mathrm{~Hz}, \mathrm{H}-9$), 3.77-3.72/3.71-3.67 (dd, $1 \mathrm{H}, \mathrm{J} 9.4,8.2$ Hz, H-9) 3.49-3.44 (dd, J $14.7,1.3 \mathrm{~Hz}, \mathrm{H}-6$), 2.99-2.86 (m, 4 H, H-6, H-7, H-2, H-7), 2.18-2.15 (m, 1 H, H-4), 2.08-1.99 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3$), 1.91-1.82 (m, $2 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-3$), 1.48-1.40 (m, 1 $\mathrm{H}, \mathrm{H}-8), 1.11-0.99\left(\mathrm{~m}, 21 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz})(\delta): 131.63(\mathrm{CH}, \mathrm{Ph}), 128.24(\mathrm{CH}, \mathrm{Ph}), 122.77(\mathrm{C}, \mathrm{Ph})$, 93.34 (С, C-10), 83.84/83.81 (C, C-11), 68.03 (C, C-5), 65.95/ $65.74\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 60.04 / 59.96\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 56.20 / 56.18(\mathrm{CH}, \mathrm{C}-2)$, $48.74\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 34.91 / 34.88(\mathrm{CH}, \mathrm{C}-4), 27.89 / 27.80\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-8), 19.37 / 18.69\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 18.00\left(\mathrm{CH}_{3}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right), 11.88$ ($\left.\mathrm{CH}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 413\left(\mathrm{M}^{+}, 47\right), 371(66), 343$ (10), 226 (100). HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{NO}_{2} \mathrm{Si}$: 413.2750; found 413.2752.
(1S,2R,4S,5S)-2-(Triphenylmethyloxymethyl)-5-(10-phenylethynyl)-1-azabicyclo[2.2.2]octan-5-ol (11n). 9e (134 $\mathrm{mg}, 0.34 \mathrm{mmol}$) was allowed to react with lithiated phenyl acetylene ($1.02 \mathrm{mmol}, 3$ equiv) according to the general procedure to afford anti-11n ($79 \%, 133 \mathrm{mg}, 0.270 \mathrm{mmol}$) with 87% de. IR $\left(\mathrm{CHCl}_{3}\right)(v): 3061,2999,2940,1598,1491,1448$, 1230, 1070, $1025 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD}$) (δ): 7.49-7.46 (m, $7 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.34-7.27 (m, $5 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.26-7.22 (m, 6 H, Ar-H), 7.20-7.16 (m, 2 H, Ar-H), 3.313.23 (m, 2 H, H-9, H-6), 3.14-3.09 (m, 1 H, H-9), 3.08-3.02 (m, $1 \mathrm{H}, \mathrm{H}-2$), 2.99-2.88 (m, $2 \mathrm{H}, \mathrm{H}-7$), 2.89-2.85 (d, J 14.8

Hz, H-6), 2.15-2.11 (m, 1 H, H-4), 2.05-1.97 (m, 1 H, H-3), $1.94-1.87$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-8$), 1.77-1.71 (m, $1 \mathrm{H}, \mathrm{H}-8$), 1.47-1.39 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD}$) (δ): 144.07 (C, Ph), 131.72 (CH, Ph), 128.74 (CH, Ph), 128.26 (CH, Ph), 127.86 (CH, Ph), 126.88 (CH, Ph), 122.66 (C, Ph), 93.01 (C, C-10), 86.62 (C, Ph ${ }_{3} \mathrm{CO}$), 83.64 (C, C-11), 67.71 (C, C-5), 65.56 $\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 59.50\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 54.59(\mathrm{CH}, \mathrm{C}-2), 48.47\left(\mathrm{CH}_{2}, \mathrm{C}-7\right)$, 34.63 (CH, C-4), $28.15\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 19.21\left(\mathrm{CH}_{2}, \mathrm{C}-3\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}$: 499 (M+, 3), 370 (9), 256 (18), 243 (100), 212 (40). HRMS calcd for $\mathrm{C}_{35} \mathrm{H}_{33} \mathrm{NO}_{2}$: 499.2511; found 499.2513. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{33} \mathrm{NO}_{2}$: C 84.14, H 6.66, N 2.80; found C $83.98, \mathrm{H} 6.40, \mathrm{~N}$ 2.54 .
(1S,2S,4S,5S)-2-(tert-Butyldimethylsilyloxymethyl)-5-(10-phenylethynyl)-1-azabicyclo[2.2.2]-octan-5-ol (12f). 10a ($100 \mathrm{mg}, 0.37 \mathrm{mmol}$) was allowed to react with lithiated phenyl acetylene ($1.11 \mathrm{mmol}, 3$ equiv) according to the general procedure to afford anti-12f ($75 \%, 103 \mathrm{mg}, 0.280 \mathrm{mmol}$) with 16% de. IR $\left(\mathrm{CHCl}_{3}\right)(v): 2972,2932,1488,1264,1144,1020$ $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR (400 MHz) (δ): 7.49-7.40 (m, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.32-7.28 (m, 3H, Ar-H), 3.61-3.49 (m, $2 \mathrm{H}, \mathrm{H}-9$), 3.413.37 (d, 1 H, J 14.0 Hz, H-6), 3.17-3.08 (m, 1 H, H-6), 3.022.94 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2$), 2.82-2.68 (m, $2 \mathrm{H}, \mathrm{H}-7$), 2.18-2.03 (m, 2 $\mathrm{H}, \mathrm{H}-4, \mathrm{H}-3$), 1.58-1.51/1.36-1.28 (m, 1 H, H-8), 1.27 (m, 9 $\left.\mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.09-1.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 0.92-0.82(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-3), 0.02-0.01\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{SiCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz) (δ): 131.66 (CH, Ph), 128.48/128.34 (CH, Ph), 122.54/122.47 (C, Ph), 92.82/92.77 (C, C-10), 84.27/83.92 (C, C-11), 67.82/67.51 (C, C-5), 66.47/66.31 ($\left.\mathrm{CH}_{2}, \mathrm{C}-9\right), 62.72 / 62.59\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 56.69 /$ 56.29 (CH, C-2), $39.51 / 39.31\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 34.87 / 34.46$ ($\mathrm{CH}, \mathrm{C}-4$), $31.23\left(\mathrm{CH}_{3}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 27.02 / 23.74\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 23.29 / 19.78$ $\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 18.32\left(\mathrm{C}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right),-5.31\left(\mathrm{CH}_{3}, \mathrm{SiCH}_{3}\right),-5.37$ $\left(\mathrm{CH}_{3}, \mathrm{SiCH}_{3}\right)$. FAB-MS $372\left(\mathrm{M}^{+}+1,23\right), 282(27), 258$ (100). HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{Si}$: 371.2281; found 371.2262.
(1S,2R,4S,5S)-2-(Bromomethyl)-1-azabicyclo[2.2.2]octan-$5-\mathrm{ol}$ (110). 9f ($102 \mathrm{mg}, 0.47 \mathrm{mmol}$) was allowed to react with L-Selectride ($0.71 \mathrm{~mL}, 0.71 \mathrm{mmol}$) according to the general procedure to afford di astereomeric al cohols anti-110 and syn$110(85 \%, 87 \mathrm{mg}, 0.40 \mathrm{mmol})$ in a ratio of 2.2:1 (38\% de). IR $\left(\mathrm{CHCl}_{3}\right)(v): 3385,2955,2928,1453,1230,1116,1028 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz) (δ): 4.08-4.03 (m, $1 \mathrm{H}, \mathrm{H}-5$), 3.85-3.81/ $3.61-3.56$ (m, $1 \mathrm{H}, \mathrm{H}-6$), 3.74-3.71/3.42-3.35 (m, $2 \mathrm{H}, \mathrm{H}-7$), 3.51-3.44/3.32-3.23 (m, 1 H, H-2), 3.15-3.07/3.04-2.97 (m, $1 \mathrm{H}, \mathrm{H}-9$), 2.91-2.86 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J} 13.1 \mathrm{~Hz}, \mathrm{H}-6$), 2.14-2.10 (m, 1 H, H-4), 2.00-1.94/1.87-1.79 (m, 1 H, H-3), 1.76-1.67/1.63$1.53(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 1.43-1.36(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-3) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz})(\delta): 64.83 / 64.63(\mathrm{CH}, \mathrm{C}-5), 58.02 / 56.76$ (CH, C-2), $51.86 / 50.95\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 49.26 / 48.63\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 31.78 / 30.94$ $\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 29.38 / 23.77\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 28.67 / 28.27(\mathrm{CH}, \mathrm{C}-4)$, 21.57/16.72 ($\left.\mathrm{CH}_{2}, \mathrm{C}-3\right)$. MS m/z: $222\left(\mathrm{M}^{+}+\mathrm{H}, 8\right), 220\left(\mathrm{M}^{+}+\mathrm{H}\right.$, 8), 140 (100), 126 (12). HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{NOBr}$: 219.0259; found 219.0258. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{NOBr}$: C 43.65, H 6.41, N 6.36; found C 43.86, H 6.58, N 6.09.
(1S,2R,4S,5S)-2-(tert-Butyldiphenylsilyloxymethyl)-5-(methanesulfonyloxy)-1-azabicyclo-[2.2.2]octane (anti13) and (15,2R,4S,5R)-2-(tert-Butyldi phenylsilyloxymeth-yl)-5-(methane-sulfonyloxy)-1-azabicyclo[2.2.2]octane (syn13). Methanesulfonyl chloride (1.3 equiv) was added to a solution of 11b ($560 \mathrm{mg}, 1.42 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ (2.0 equiv) in abs $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 8 h at rt , treated with saturated aqueous NaHCO_{3}, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After the solution was dried (over MgSO_{4}), the crude product was purified by column chromatography (EA/ $\mathrm{MeOH} 40: 1$) and mesylates anti-13 ($79 \%, 531 \mathrm{mg}, 1.12 \mathrm{mmol}$) and syn- $13(15 \%, 100 \mathrm{mg}, 0.21 \mathrm{mmol})$ were separated. Data for anti-13, IR $\left(\mathrm{CHCl}_{3}\right)(v)$: 3051, 2945, 1589, 1471, 1428, 1230, $1174,1113 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})(\delta): 7.69-7.66(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{Ar}-\mathrm{H}$), $7.47-7.38$ (m, $6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.77-4.72$ (m, $1 \mathrm{H}, \mathrm{H}-5$), 3.72-3.67 (dd, 1 H, J 18.1, $15.5 \mathrm{~Hz}, \mathrm{H}-9$), 3.69-3.64 (dd, 1 H , J $18.2,15.7 \mathrm{~Hz}, \mathrm{H}-9$), $3.53-3.47$ (dd, $1 \mathrm{H}, \mathrm{J} 15.4,8.2 \mathrm{~Hz}$, H-6endo), 3.03 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{MeSO}$), $2.96-2.92$ (m, $2 \mathrm{H}, \mathrm{H}-7$), 2.912.84 (m, 1 H, H-2), 2.79-2.75 (d, 1 H, J $15.3 \mathrm{~Hz}, \mathrm{H}-6_{\text {exo }}$), 2.302.25 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4$), $1.91-1.83$ (m, 2 H, H-8, H-3), $1.52-1.43$ (m, $2 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-3$), 1.08 (s, $\left.9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$; NOE H-5 irradiated $\mathrm{H}-6_{\text {endo }}(4.8 \%), \mathrm{H}-3_{\text {endo }}(4.8 \%), \mathrm{H}-4(5.6 \%), \mathrm{H}-6_{\text {endo }}$ irradiated H-5 (4.9\%), H-6exo (27.4\%). ${ }^{13} \mathrm{C}$ NMR (100 MHz) (δ): 135.61 (CH,
$\mathrm{Ar}-\mathrm{H}$), 133.32 ($\mathrm{C}, \mathrm{Ar}-\mathrm{Si}$), $129.74(\mathrm{CH}, \mathrm{Ar}-\mathrm{H}), 127.75(\mathrm{CH}$, $\mathrm{Ar}-\mathrm{H}$), 79.17 (CH, C-5), 66.11 ($\left.\mathrm{CH}_{2}, \mathrm{C}-9\right), 55.67$ (CH, C-2), $51.02\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 49.58\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 38.51\left(\mathrm{CH}_{3}, \mathrm{Me}-\mathrm{SO}_{2}\right), 27.57$ ($\mathrm{CH}, \mathrm{C}-4), 27.32\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 26.89\left(\mathrm{CH}_{3}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 19.24(\mathrm{C}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.09\left(\mathrm{CH}_{2}, \mathrm{C}-3\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 473\left(\mathrm{M}^{+}, 1\right), 440(2), 416$ (100), 394 (25), 320 (23). HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{SSi}$: 473.2056; found 473.2054. Data for syn-13, IR $\left(\mathrm{CHCl}_{3}\right)(v)$: 3072, 2944, 1589, 1471, 1428, 1231, 1175, $1113 \mathrm{~cm}^{-1} .^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})(\delta): 7.73-7.69(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.45-7.38(\mathrm{~m}, 6 \mathrm{H}$, $\mathrm{Ar}-\mathrm{H}), 4.79-4.74$ (m, $1 \mathrm{H}, \mathrm{H}-5), 3.79-3.76$ (d, $2 \mathrm{H}, \mathrm{J} 6.1 \mathrm{~Hz}$, H-9), 3.16-3.13 (d, 1 H, J $14.7 \mathrm{~Hz}, \mathrm{H}-6_{\text {endo }}$), $3.11-3.05$ (m, 1 $\mathrm{H}, \mathrm{H}-\mathrm{C}_{\text {exo }}$), 2.97-2.85 (m, $2 \mathrm{H}, \mathrm{H}-7, \mathrm{H}-2$), 2.94 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{MeSO}_{2}$), 2.77-2.69 (m, 1 H, H-7), 2.24-2.21 (m, 1 H, H-4), 1.88-1.81 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3$) , 1.80-1.72 (m, $1 \mathrm{H}, \mathrm{H}-8$), $1.67-1.56$ ($\mathrm{m}, 2 \mathrm{H}$, H-8, H-3), 1.09 (s, $\left.9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$; NOE H-5 irradiated H-6exo (9.8\%), H-8exo (2.5\%), H-4 (3.9\%), H-6endo irradiated H-5 (9.8\%), H-6exo (16.3\%), H-7exo (4.1\%). ${ }^{13}$ C NMR (100 MHz) (δ): 135.65 ($\mathrm{CH}, \mathrm{Ar}-\mathrm{H}$), 133.49 ($\mathrm{C}, \mathrm{Ar}-\mathrm{Si}$), 129.77 (CH, Ar-H), 127.72 ($\mathrm{CH}, \mathrm{Ar}-\mathrm{H}$), $78.58(\mathrm{CH}, \mathrm{C}-5), 65.73\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 56.96(\mathrm{CH}, \mathrm{C}-2)$, $49.90\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 48.92\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 38.55\left(\mathrm{CH}_{3}, \mathrm{Me}-\mathrm{SO}_{2}\right), 27.92$ ($\mathrm{CH}, \mathrm{C}-4), 26.87\left(\mathrm{CH}_{3}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 23.96\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 21.68$ $\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 19.27\left(\mathrm{C}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 473\left(\mathrm{M}^{+}, 1\right), 416$ (100), 394 (11), 320 (10). HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{SSi}$: 473.2056; found 473.2057.
(1S,2R,4S,5R)-2-(tert-Butyldiphenylsilyloxymethyl)-5-(10,11,13-triazolyl)-1-azabicyclo-[2.2.2]octan-5-ol (14). Sodium triazolate ($143 \mathrm{mg}, 1.57 \mathrm{mmol}, 4$ equiv) was added to a solution of anti- 13 ($186 \mathrm{mg}, 0.390 \mathrm{mmol}$) in DMF at rt. The heterogeneous reaction mixture was stirred for 8 h at $110^{\circ} \mathrm{C}$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and extracted with saturated aqueous NaHCO_{3}. The organic layer was dried (over MgSO_{4}), the solvent evaporated in vacuo, and the residue purified by column chromatography ($\mathrm{EA} / \mathrm{MeOH} 20: 1$) to yield 14 ($74 \%, 129$ $\mathrm{mg}, 0.290 \mathrm{mmol})$. I $\mathrm{R}\left(\mathrm{CHCl}_{3}\right)(v): 3072,2999,2952,1602,1472$, $1427,1230,1113,1011 \mathrm{~cm}^{-1} .^{1} \mathrm{H}$ NMR (400 MHz) (δ): $8.04(\mathrm{~s}$, 1 H , triazol-H), 7.92 (s, 1 H , triazol-H), 7.71-7.66 (m, 4 H , $\mathrm{Ar}-\mathrm{H}), 7.47-7.36(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.34-4.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5)$, 3.84-3.75 (m, 2 H, H-9), 3.46-3.40 (ddd, 1 H, J 14.6, 6.9, 2.2 Hz, H-6), 3.28-3.21 (dd, 1 H, J 14.6, $9.7 \mathrm{~Hz}, \mathrm{H}-6$), $3.06-3.93$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-7, \mathrm{H}-2$), 2.89-2.77 (m, $1 \mathrm{H}, \mathrm{H}-7$), 2.32-2.26 (m, 1 $\mathrm{H}, \mathrm{H}-4), 1.85-1.60(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-8, \mathrm{H}-3), 1.04$ (s, $9 \mathrm{H}, \mathrm{SiC}-$ $\left.\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz) (δ): $151.41(\mathrm{CH}$, triazol-H), 141.93 (CH, triazol-H), 135.68 (CH, Ar-H), 133.55 (C, Ar-

Si), 129.65 ($\mathrm{CH}, \mathrm{Ar}-\mathrm{H}$), 127.63 ($\mathrm{CH}, \mathrm{Ar}-\mathrm{H}$), 67.40 (C, C-5), $65.75\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 57.13(\mathrm{CH}, \mathrm{C}-2), 49.02\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 47.95\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-7), 28.67(\mathrm{CH}, \mathrm{C}-4), 26.91\left(\mathrm{CH}_{3}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.55\left(\mathrm{CH}_{2}, \mathrm{C}-8\right)$, $23.47\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 19.26\left(\mathrm{C}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$. FAB-MS $447\left(\mathrm{M}^{+}+1\right.$, 53): 389 (29), 378 (100), 320 (18), 300 (8), 135 (7). HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{OSi}$: 446.6158; found 446.6152.
(1S,2R,4S)-2-(Hydroxymethyl)-5-(13-methylfuranyl)-1-azabicyclo[2.2.2]oct-5-ene (15). 11i ($82 \mathrm{mg}, 0.35 \mathrm{mmol}$) was dissolved in $\mathrm{HCOOH}\left(99 \%, 2 \mathrm{~mL}\right.$), stirred for 4 h at $100^{\circ} \mathrm{C}$, and neutralized with aq KOH . The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After it was dried (over MgSO_{4}), the resulting organic layer was concentrated in vacuo and the residue purified by column chromatography ($\mathrm{EA} / \mathrm{MeOH} 4: 1$) to yield $15(96 \%, 73 \mathrm{mg}, 0.33 \mathrm{mmol})$. IR $\left(\mathrm{CHCl}_{3}\right)(v): 2999$, 2957, 1591, 1412, 1284, 1134, $1023 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD}$) (δ): 6.64 (s, $1 \mathrm{H}, \mathrm{H}-6$), $6.34-6.32$ ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}$ $3.3 \mathrm{~Hz}, \mathrm{H}-11$), $5.90-5.87$ (dd, $1 \mathrm{H}, \mathrm{J} 3.3,1.0 \mathrm{~Hz}, \mathrm{H}-12$), $3.46-$ 3.39 (m, $1 \mathrm{H}, \mathrm{H}-2$), 3.39-3.34 (m, $1 \mathrm{H}, \mathrm{H}-9$), 3.33-3.17 (m, 2 $\mathrm{H}, \mathrm{H}-9, \mathrm{H}-7$), 3.07-3.04 (bs, $1 \mathrm{H}, \mathrm{H}-4), 2.94-2.86$ (m, $1 \mathrm{H}, \mathrm{H}-7$), 2.31 (s, $3 \mathrm{H}, \mathrm{J} 3.1 \mathrm{~Hz}, \mathrm{H}-14$), 2.00-1.93 (m, $1 \mathrm{H}, \mathrm{H}-3$), $1.87-$ 1.79 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-8$), 1.69-1.61 (m, $1 \mathrm{H}, \mathrm{H}-8$), 0.99-0.95 (m, 1 $\mathrm{H}, \mathrm{H}-3) .{ }^{13} \mathrm{C}$ NMR (100 MHz) (δ): 153.82 (C, C-13), 147.17 (C, C-10), 137.18 (C, C-5), 123.66 (CH, C-6), 109.08 (CH, C-12), $107.54(\mathrm{CH}, \mathrm{C}-11), 64.19\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 63.67(\mathrm{CH}, \mathrm{C}-2), 50.43$ $\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 28.22(\mathrm{CH}, \mathrm{C}-4), 29.69\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 24.66\left(\mathrm{CH}_{2}, \mathrm{C}-8\right)$, $13.71\left(\mathrm{CH}_{3}, \mathrm{C}-14\right) . \mathrm{MS}$ m/z: 219 (${ }^{+}$, 87), 202 (15), 190 (25), 161 (100), 146 (27). HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}$: 219.1259; found 219.1259.

Acknowledgment. We thank Buchler GmbH-Chininfabrik Braunschweig for a generous gift of QCI and QCD, Degussa AG Hanau for a generous gift of OsO_{4}, the F onds der Chemischen I ndustrie for a Ph.D. fellowship (J.F.), and Ulrike E ggert and Henning Stückmann for their help.

Supporting Information Available: X-ray data for compounds $\mathbf{9 f}$, anti-110, and syn-110 and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for each new compound. This material is free of charge via the Internet at http://pubs.acs.org.
J 09919815

[^0]: * To whom correspondence should be addressed. Fax: Int + (0) 511 762 3011. E-mail: hoffmann@mbox.oci.uni-hannover.de.
 (1) Saunders, J.; Cassidy, M.; Freedman, S. B.; Harley, E. A.; I versen, L. L.; K neen, C.; Macleod, A. M.; Merchant, K. J .; Snow, R. J .; Baker, R. J. Med. Chem. 1990, 33, 1128. Baker, R.; Street, L. J .; Reeve, A. J.; Saunders, J. J. Chem. Soc., Chem. Commun. 1991, 760. Ashwood, M. S.; Gibson, A. W.; Houghton, P. G.; Humphrey, G. R.; Roberts, D. C.; Wright, S. H. B. J . Chem. Soc., Perkin Trans. 1 1995, 641; Nordvall, G.; Sundquist, S.; Nilvebrant, L.; Hacksell, U. Bioorg. Med. Chem. Lett. 1994, 4, 2837. J ohansson, G.; Sundquist, S.; Nordvall, G.; Nilsson, B. M.; Brisander, M.; Nilvebrant, L.; Hacksell, U. J . Med. Chem. 1997, 40, 3804.
 (2) Wadsworth, H. J .; J enkins, S. M.; Orlek, B. S.; Cassidy, F .; Clark, M. S. G.; Brown, F.; Riley, G. J.; Graves, D.; Hawkins, J .; Naylor, C. B. J. Med. Chem. 1992, 35, 1280.
 (3) Flippin, L. A.; Carter, D. S.; Berger, J .; Clark, R. D.; Bonhaus, D. W.; Leung, E.; Eglen, R. M. Bioorg. Med. Chem. Lett. 1996, 6, 477; Clark, R. D.; Weinhardt, K. K.; Berger, J .; Lee, C.-H.; Leung, E.; Wong, E. H. F.; Smith, W. L.; Eglen, R. M. Bioorg. Med. Chem. Lett. 1993, 3, 1375; Langlois, M.; Soulier, J . L.; Allainmat, M.; Shen, S.; Gallais, C. Bioorg. Med. Chem. Lett. 1993, 3, 1555.
 (4) Fong, T. M.; Cascieri, M. A.; Yu, H.; Bansai, A.; Swain, C.; Strader, C. D. Nature 1993, 362, 350-353; Snider, R. M.; Constantine, J . W.; Lowe, J . A., III; Longo, K. P.; Lebel, W. S.; Woody, H. A.; Drozda, S. E.; Desai, M. C.; Vinick, F. J.; Spencer, R. W. Science 1991, 251, 435; McLean, S.; Ganong, A. H.; Seeger, T. F.; Bryce, D. K.; Pratt, K. G.; Reynolds, L. S.; Siok, C. J.; Lowe, J. A., III; Heym, J. Science 1991, 251, 437. Lowe, J . A., III; Drozda, S. E.; Snider, R. M.; Longo, K. P.; Bordner, J. Bioorg. Med. Chem. Lett. 1991, 1, 129. Swain, C. J.; Fong, T. M.; Haworth, K.; Owen, S. N.; Seeward, E. M.; Strader, C. D. Bioorg. Med. Chem. Lett. 1995, 5, 1261.

[^1]: (12) Kang, S. H.; Kim, W. J. Synlett 1991, 520. Wünsch, B.; Zott, M. Synthesis 1992, 927.

[^2]: (15) Tsai, T. L.; Chen, W.-C.; Yu, C.-H.; Ie Noble, W. J .; Chung, W.S. J. Org. Chem. 1999, 64, 1099-1107. Bodepudi, V. R.; Ie Noble, W. J. J. Org. Chem. 1994, 59, 3265. Kaselj, M.; Chung, W.-S.; Ie Noble, W. J . Chem. Rev. 1999, 99, 1387.
 (16) Halterman, R. L.; McCarthy, B. A.; McEvoy, M. A. J . Org. Chem. 1992, 57, 5585.
 (17) Cieplak, A. S.; Trait, B. D.; J ohnson, C. R. J. Am. Chem. Soc. 1989, 111, 8447; Cieplak, A. S. J. Am. Chem. Soc. 1981, 103, 4540; Cieplak, A. S. Chem. Rev. 1999, 99, 1265.
 (18) Adcock, W.; Cotton, J.; Trout, N. A. J. Org. Chem. 1994, 59, 1867.
 (19) Paddon-Row, M. N.; Wu, Y.-D.; Houk, K. N. J. Am. Chem. Soc. 1992, 114, 10638.
 (20) Coxon, J . M.; Houk, K. N.; Luibrand, R. T. J . Org. Chem. 1995, 60, 418.
 (21) Ohwada, T. Chem. Rev. 1999, 99, 1337.
 (22) Varech, D.; J acques, J. Tetrahedron Lett. 1973, 4443. Brienne, M. J .; Varech, D.; J acques, J. Tetrahedron Lett. 1974, 1233. Chérest, M. J .; Felkin, H.; Tacheau, P.; J acques, J.; Varech, D. J. Chem. Soc., Chem. Commun. 1977, 372.
 (23) Ganguly, B.; Chandrasekhar, J .; Khan, F. A.; Mehta, G. J. Org. Chem. 1993, 58, 1734. Mehta, G.; Khan, F. A.; Ganguly, B.; Chandrasekhar, J. J. Chem. Soc., Chem. Commun. 1992, 1711.
 (24) Pudzianowski, A. T.; Barrish, J . C.; Spergel, S. H. Tetrahedron Lett. 1992, 33, 293.
 (25) Reetz, M. T. Angew. Chem. 1984, 96, 73. Reetz, M. T. Acc. Chem. Res. 1993, 26, 462. Mori, S.; Nakamura, M.; Nakamura, E.; K oga, N.; M orokuma, K. J. Am. Chem. Soc. 1995, 117, 5055. Martin, R.; Pascual, O.; Romea, P.; Rovira, R.; Urpi, F.; Vilarrasa, J. Tetrahedron Lett. 1997, 38, 1633.

[^3]: (26) F or detailed X-ray diffraction data of compounds 9f, anti-110, and syn-110, see: Wartchow, R.; Frackenpohl, J.; H offmann, H. M. R. Z. Kristallogr., NCS, 2000. In press. For further crystal structures of quincorine and quincoridine derivatives, see: Wartchow, R.; Schrake, O.; Braje, W. M.; H offmann, H. M. R. Z. Kristallogr. NCS 1999, 214, 285. von Riesen, C.; Wartchow, R.; Hoffmann, H. M. R. Z. Kristallogr. NCS 1998, 213, 483. Wartchow, R.; Frackenpohl, J.; Röper, S.; Hoffmann, H. M. R. Z. Kristallogr. NCS, 2000. In press.

[^4]: (27) Braje, W. M. Ph.D. Thesis, Hannover, 1999. Frackenpohl, J. Ph.D. Thesis, Hannover, 2000.
 (28) Gung, B. W. Chem. Rev. 1999, 99, 1377, in particular 1379. Hahn, J. M.; Ie Noble, W. J. J . Am. Chem. Soc. 1992, 114, 1916.

[^5]: (29) H offmann, H. M. R.; Schrake, O. Tetrahedron: Asymmetry 1998, 9, 1051
 (30) Schrake, O.; Braje, W.; Hoffmann, H. M. R.; Wartchow, R. Tetrahedron: Asymmetry 1998, 9, 3717.
 (31) Schrake, O.; Rahn, V. S.; Frackenpohl, J.; Braje, W. M.; Hoffmann, H. M. R. Org. Lett. 1999, 1, 1607.

